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Chapter 8
Applications of Satellite Observations
of Tropospheric Composition

Paul S. Monks and Steffen Beirle

8.1 Introduction

The advent of satellite measurements of the troposphere has taken us from a local/
regional view of composition previously available from ground-based measurements
to a global view. This revolution in tropospheric research has only occurred in the
last three decades. Although instruments for surface mapping and meteorological
parameters were recognized as remote sensing applications from the start of the
space age, the remote sounding of tropospheric constituents by satellite instrumen-
tation, often conceived for stratospheric measurement, has been used initially to
give a new global view of tropospheric composition.

The time scales of atmospheric processes range from seconds to decades. For
example, a pollution episode may only be apparent for a week or less, but the wider
impact of such an episode may last much longer. This reflects the fact that processes
such as the emission rate to the planetary boundary layer, chemical production,
homogenous (e.g. radical-molecule, radical-radical, photolysis) and heterogeneous
reactions, including both wet and dry deposition, determine the production and
removal rates of species within the atmosphere. Remote sounding of the tropo-
sphere from satellites yields measurements of atmospheric composition, which give
regional and global views on spatial and temporal scales not available from any
other observing system. The number and type of measurements of a species
required to provide a true global representation depends on the atmospheric life-
times of the species involved.

The challenge of remote sensing the troposphere from satellite platforms is
substantial and it is only with the current generation of satellite instruments and
improvements in retrieval that a view of the troposphere has become available from
space. An era is dawning in which long time series measurements of the troposphere
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from space will become available leading to new understanding of regional and
global change. One of the challenges currently being tackled is the assimilation
and fusion of different data streams to give a more holistic view of chemical and
physical processes in the troposphere.

After the launch of a satellite for each instrument there are a number of scientific
stages for the application of satellite data from the first-light in space to the
calibration and validation of the satellite product which is a continuous process.
The next stage is an observational stage, where the scientific discovery comes from
an appreciation of the temporal and spatial distribution of the trace compound, the
final stage becomes quantitative analysis with a model.

The aim of this chapter is to give an overview about the utility of satellite
observations for measuring tropospheric composition. The focus will be on probing
the chemical composition of the atmosphere. The retrieval and applications of
aerosols are considered separately in Chapter 6 and the methodologies for the
retrieval and validation of the trace species are described in Chapters 2, 3 and 7.
This chapter summarises the tropospheric chemical species that can be measured
from space and looks at the generalised applications of these measurements at the
primary observational level. For a full list of satellites that have measured atmo-
spheric composition in the troposphere and stratosphere readers are referred to the
table in Appendix A of this book and also to Burrows (1999) and Martin (2008).

8.2 Overview of the Tropospheric Chemical Species
Measured from Space

In this section the tropospheric gases that can be measured from space will be
reviewed. Table 8.3 lists the tropospheric chemical species that have been measured
from space. A recent overview of the main scientific questions and drivers for
tropospheric composition can be found in Monks et al. (2009).

8.2.1 Tropospheric Ozone, O3

Ninety percent of atmospheric O3 can be found in the stratosphere; on average only
about 10% resides in the troposphere. While stratospheric O3 determines the
amount of short wavelength radiation available to initiate photochemistry (Monks
2005), tropospheric O3 acts as initiator, reactant and product in much of the
oxidation chemistry that takes place in the troposphere.

Tropospheric O; was one of the first chemical species (other than water) to
derived from space-based total O3 column observations based on the UV radiances
measured by the TOMS instrument combined with stratospheric measurements and/
or SAGE and SBUYV to give tropospheric residuals (Fishman 1991b; Fishman et al.
1990; 1996). This technique utilises back scattered solar radiation and was refined
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by Hudson, Thompson and co-workers (Hudson et al. 1995; Hudson and Thompson
1998; Kim et al. 1996) to give a tropical tropospheric O3 product. Ziemke and co-
workers have advanced the residual-type retrieval methodologies using cloud slic-
ing techniques as well as synergistic use of TOMS (Ahn et al. 2003; Ziemke et al.
1998; 2000; 2001; 2003) and latterly OMI (Choi et al. 2008; Schoeberl et al. 2007)
with stratospheric O; measurements from HALOE and MLS. These methods have
also been advanced using assimilation techniques (Stajner et al. 2008).

Measurements of tropospheric O3 were expanded using GOME-1 (Hoogen et al.
1999; Liu et al. 2006b; Munro et al. 1998). A number of groups have gone on to
improve the retrievals of tropospheric O; using a variety of methodologies (Del
Frate et al. 2005; Iapaolo et al. 2007; Liu et al. 2007; Muller et al. 2003; Tellmann
et al. 2004; van der A et al. 2002). There has been an extensive study to compare
GOME-1 O3 profiles from nine different algorithms (Meijer et al. 2006).

Recent tropospheric O; products have become available from TES (Nassar et al.
2008; Osterman et al. 2008; Richards et al. 2008; Worden et al. 2007a; 2007b) that
offers direct measurements of tropospheric O; from mid-IR spectra. Using IASI
data for example, Eremenko et al. (2008) have shown the ability to map out the O3
distributions during the European heatwave of 2007.

The general distribution and inter-annual variability of tropospheric O; as
measured from space has been shown using a range of satellite sensors (Fishman
and Brackett 1997; Fishman et al. 2005; Liu et al. 2006b; Ziemke et al. 2006). Satellite
derived tropospheric O3 has been used to investigate the influence of strato-
spheric air masses on tropospheric vertical O; columns over the Pacific (Ladstatter-
Weissenmayer et al. 2004). Various tropospheric and stratospheric O; satellite data
has been combined with O3 sondes to produce O; climatologies (Lamsal et al. 2004).
Early work indentified tropospheric pollution episodes (Fishman et al. 1987) which
have recently been improved to show regional pollution (Fishman et al. 2003).

In the tropics, there has been a comparison of tropical O; columns from GOME
with a model (Valks et al. 2003), as well as studies of O; over Africa (Meyer-Arnek
et al. 2005a). The impact of biomass burning (BB) on tropical Atlantic O3 has also
been assessed (Jourdain et al. 2007). Long terms trends in satellite derived tropo-
spheric O3 over the Pacific have been derived showing a significant upward trend in
the mid-latitudes of both hemispheres but not in the tropics (Ziemke et al. 2005). O3
has been used in combination with other tracers to investigate lightning (Martin
et al. 2007), oxidant budgets over the Indian ocean (Ladstatter-Weissenmayer et al.
2007a), pollution flows from north America (Choi et al. 2008) and the effects of the
2006 EI Nino (Logan et al. 2008).

The distribution of O; and other trace gases are governed by the complex
interaction of dynamical, chemical and radiative processes. Feedbacks within the
chemistry climate system, in particular the impact of changing O on the Earth’s
climate system via radiative forcing in the upper troposphere/lower stratosphere
region which is sensitive to such perturbations, has been thought to be of particular
importance (Worden et al. 2008). There are number of satellite instruments that
give solely upper tropospheric (and lower stratospheric) views of O3 (and a range of
other tracers, see for example Section 8.2.6) (Coheur et al. 2005; Fischer et al. 2008;
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Hegglin et al. 2008; Nardi et al. 2008; Raspollini et al. 2006; Rozanov et al. 2007).
Studies of upper tropospheric O3 have included assessing the impact of biomass
burning (Clarmann et al. 2007).

8.2.2 Nitrogen Dioxide, NO,

Nitrogen oxides (NO, = NO + NO,) are released into the troposphere from a
variety of biogenic, anthropogenic and physical sources including fossil fuel com-
bustion, biomass burning, microbial activity in soils and lightning discharges. There
is still some debate about the exact magnitude of the various sources and sinks for
NOy (Lerdau et al. 2000). According to present estimates, about 30% of the global
budget of NO, comes from fossil fuel combustion with almost 86% of the NOy
emitted in one form or the other into the planetary boundary layer from surface
processes. Other major sources are biomass burning ca. 19%, microbial release from
soil 32% and lightning 13% (Schumann and Huntrieser 2007). Typical NO/NO,
ratios in surface air are 0.2-0.5 during the day tending to zero at night. Over the
timescales of hours to days NOy is converted to nitric acid and nitrates, which are
subsequently removed by rain and dry deposition.

Satellite measurements of tropospheric NO, have found widespread utility.
Observational analyses have demonstrated the strong weekly cycles in the observed
NO, (Beirle et al. 2003), the influence of biomass burning (Burrows et al. 1999;
Ladstatter-Weissenmayer and Burrows 1998; Thomas et al. 1998) and continental
scale outflow (Leue et al. 2001; Richter and Burrows 2002).

Owing to the importance of nitrogen dioxides in air quality (DEFRA 2003) there
has been a focus on comparisons of tropospheric NO, measurements with ground
sites for regional air quality (Blond et al. 2007). Measurements have been compared
to ground based measurements in Kyrgyzstan (Ionov et al. 2006), St Petersburg
(Poberovskii et al. 2007), the Moscow region (Timofeev et al. 2000), Switzerland
(Schaub et al. 2005; 2007), the Milan area (Ordonez et al. 2006) and in the urban
UK (Kramer et al. 2008). Comparisons have also been made with airborne data over
the south-eastern USA (Martin et al. 2004b), the Alps/Mediterranean (Heue et al.
2005), over the Atlantic (Bucsela et al. 2008), and over Shanghai (Chen et al. 2009).
On a regional scale, there have been comparisons with regional models over North
America (Chun’e and Baoning 2008; Kim et al. 2009), Asia (Han et al. 2009; Uno
et al. 2007), Africa (Meyer-Arnek et al. 2005a) and Europe (Konovalov et al. 2005).
The data over Europe showed varying agreement with bottom-up emission inven-
tories highlighting both apparent over and under-estimates (Konovalov et al. 2006;
2008).

Tropospheric NO, data have been used to quantify NO, emissions from soil
(Bertram et al. 2005; Jaegle et al. 2004), shipping (Beirle et al. 2004a; Richter et al.
2004; Franke et al. 2009), power plants (Kim et al. 2006; 2009) and lightning
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(Beirle et al. 2004c; 2006; Boersma et al. 2005; Choi et al. 2005; Hild et al. 2002;
Martin et al. 2007; Sioris et al. 2007; Thomas et al. 2003).

The length and quality of the space-based NO, records has allowed the observa-
tion of trends. Trends in tropospheric column densities of NO, can highlight the
effectiveness of legislative abatement methods as well as the accuracy of emission
inventories. There has been particular interest in the NO, trend over the developing
countries in eastern Asia (Irie et al. 2005) and, in particular, China (Richter et al.
2005; van der A et al. 2006; He et al. 2007; Zhang et al. 2007) as well as the global
trend (Richter et al. 2005; van der A et al. 2008; Hayn et al. 2009). Richter et al.
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Fig. 8.1 Left: monthly averages of tropospheric vertical columns of NO, over eastern central
China. The temporal evolution of tropospheric NO, columns from GOME and SCIAMACHY.
Right: the mean annual NO, column amount normalized to that in 1996 for the geographical
regions USA, central east coast USA, western Europe, Poland, Japan, eastern central China, and
Hong Kong. The error bars represent the estimated uncertainty (s.d.) for an individual year, the
values over China being larger as a result of the poorer knowledge and therefore larger uncertainty
of the aerosol loading and its change (Richter et al. (2005) (Reprinted by permission of Macmillan
Publishers Ltd)).

(2005) showed that there had been a 50% increase in the emissions of NO, over
China in the period 1996-2004 (see Fig. 8.1 and Section 8.3.3).

Owing to the nature of NO, emissions there have been many studies that use the
satellite data in combination with other data sources and models to constrain
emission budgets. For example, Jaegle et al. (2005) used inverse methods to take
GOME NO, data and partition the emissions between fossil fuel, biomass burning
and soil emissions. A number of groups have inverted the space data in order to
derive emissions for China (Wang et al. 2007a), Europe (Konovalov et al. 2008)
and globally (Jaegle et al. 2005; Konovalov et al. 2006; Muller and Stavrakou 2005;
Stavrakou et al. 2008). Stavrakou et al. (2008) inverted the 10 year GOME/
SCIAMACHY record such that the largest emission increases were found over
eastern China, and in particular in the Beijing area (growth rate of 9.6% per year),
whereas appreciable emission decreases were calculated over the United States
(—4.3% per year in the Ohio River Valley), and to a lesser extent over Europe
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(—1.4% per year in Germany, —1.0% per year in the Po Basin). They noted that the
emission changes result in significant trends in surface O3, amounting to increases
of more than 15% per decade over large parts of China in summertime.

A number of groups have used a combination of satellite data and models
to estimate global emissions of NO, (Ma et al. 2006; Martin et al. 2003; Toenges-
Schuller et al. 2006; Zhang et al. 2007) without the formal inversion of the data using
emission inventory (bottom-up) methods. Over China, Ma et al. (2006) have compared
the satellite data to a model constrained by differing emission inventories, while Zhang
et al. (2007) used a dynamic methodology to fit the observed trends over China to the
emission inventories. Non-model based statistical methods have been used to infer
global emission budgets from GOME measurements (Leue et al. 2001). The data have
been used to assess model performance (Savage et al. 2004). The distribution and
budget of tropospheric NO, over Asia, especially India, are examined using a global
3-D chemistry-meteorology model and GOME NO, columns (Kunhikrishnan et al.
2004a). Pollution and the influence of stratospheric input in the Mediterranean
(Ladstatter-Weissenmayer et al. 2003; 2007c) region has been explored using multi-
tracer satellite observations.

A global comparison of NO, data with models has been undertaken showing the
utility of these data (Lauer et al. 2002; Velders et al. 2001). The approach has been
extended with an extensive multi-model comparison (van Noije et al. 2006) that
highlighted a combination of model uncertainty and retrieval bias affected the
goodness of fit.

The role of NO, in O3 budgets has been investigated globally (Choi et al. 2008;
Edwards et al. 2003), regionally over the Mediterranean (Ladstatter-Weissenmayer
et al. 2007¢), the tropics (Sauvage et al. 2007) and over China (Zhao et al. 2006).

As recently stated by the HTAP report “Observations from the ground, aircraft
and satellites provide a wealth of evidence that ozone (O3) and fine particle
concentrations in the UNECE region and throughout the Northern Hemisphere
are influenced by intercontinental and hemispheric transport of pollutants.” Tropo-
spheric satellite observations of composition have been key observational indica-
tors and quantitative constraints (Keating and Zuber 2007).

Damoah et al. (2004) have shown that Russian forest fires produced NO, and
other products as well as CO plumes which can be transported appreciable dis-
tances. Spichtinger et al. (2001; 2004) have observed the long-range transport
(LRT) of NO, from Canadian boreal fires (Fig. 8.2). Stohl et al. (2003) used the
space-data to characterise express pathways for LRT over the North Atlantic.
Wenig et al. (2003) have tracked the long-range transport of South African power
plant emissions across the Pacific. Kunhikrishnan et al. (2004b) have examined the
export of NO, plumes from Africa and Indonesia over the central Indian Ocean.

Guerova et al. (2006) have used a combination of model and satellite data to
estimate the impacts of transatlantic transport episodes on summer O3 in Europe.
More recently Bousserez et al. (2007) used model and satellite data to characterise
both the anthropogenic and biomass burning influences in the North Atlantic LRT
during the summer of 2004.
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Fig. 8.2 GOME tropospheric NO, and HCHO columns averaged from July to August 1997 (a and c),
and 1998 (b and d). The red circles mark enhanced NO, and HCHO columns over eastern Siberia
where the strongest fire activity occurred in 1988 (Spichtinger et al. 2004).

8.2.3 Carbon Monoxide, CO

CO plays a central role in tropospheric chemistry, being a universal product of
hydrocarbon photochemical degradation chemistry as well as a primary pollutant.
Owing to its relatively long atmospheric lifetime (in the order of months) it is also a
useful tracer for tropospheric dynamical phenomena. In the background atmosphere
a combination of CO and CHy are the main loss routes for OH. The main sources of
CO are the oxidation of CH, and other non-methane hydrocarbons (NMHC) with
40-60% of surface CO levels over the continents, slightly less over the oceans, and
30-60% of CO levels in the free troposphere, being estimated to come from NMHC
oxidation (Poisson et al. 2000). The other major source of about equal magnitude is
the incomplete combustion of either fossil fuels or biomass.

The first global space-based CO measurements were made from the MAPS
instrument on board the space shuttle (Connors et al. 1999; Newell et al. 1999).
Many of the gross features of global CO e.g. biomass burning, anthropogenic pollu-
tion, NH/SH gradients where identified (Connors et al. 1999; Newell et al. 1999).
The data were used in early satellite data assimilation experiments (Lamarque et al.
1999). Fig. 8.3 shows CO data taken from the IMG on ADEOS which flew for
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Fig. 8.3 CO volume mixing ratios (ppb) in the lower troposphere (1.2 km) for 1st—10th April
1997 retrieved from the cloud filtered IMG spectra (averages on a 2° x 5° grid) (Barret et al.
2005). Compare this with Fig. 8.13c.

a period in 1996/7 (Barret et al. 2005) giving a glimpse of the global distribution
and the role of fires.

With the advent of MOPITT measurements (Deeter et al. 2003; 2004;
Drummond and Mand 1996; Edwards et al. 2004; Emmons et al. 2004) global
measurements of tropospheric CO have revolutionised our understanding of the
natural and man-made tropospheric pollution. As an example, Fig. 8.4 shows
average CO mixing ratios at the surface level, as derived from the measurements
from March 2000 to June 2007 over China and parts of India and Japan, which are
among the most populated areas of the globe (Clerbaux et al. 2008b). Daytime
observations over land were used as the highest thermal contrast is expected (Deeter
et al. 2007b) giving maximum information content along with an increased sensi-
tivity towards the surface.

These measurements can be taken down to city scale, for example in Mexico City
(Massie et al. 2006). Extensive validation of MOPITT has taken place (Emmons et al.
2007). MOPITT has been shown to be able to capture the influence of synoptic
processes on the horizontal and vertical distribution of CO (Liu et al. 2006a).

Measurements from SCTAMACHY (Buchwitz et al. 2004; 2005b; 2006; de Laat
et al. 2006; Frankenberg et al. 2005b; Gloudemans et al. 2008) which measures in
the NIR, is more weighted to the surface than thermal IR measurements and shows
enhancements of CO over urban regions (Buchwitz et al. 2007a). A comparison of
SCIAMACHY data has been made with MOPITT data (Buchwitz et al. 2006,
2007a; Gloudemans et al. 2005; Straume et al. 2005; Turquety et al. 2008).
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Fig. 8.4 Left panel: Population density (source CIESIN, in million inhabitants http://sedac.ciesin.
columbia.edu/gpw) over China and surroundings. All cities with more than two million inhabitants
are indicated. Right panel: MOPITT CO mixing ratios at the surface level (obtained by averaging
the MOPITT L2 measurements from March 2000 to June 2007). Adapted from Clerbaux et al.
(2008D).

Comparison of SCIAMACHY CO data has been made with models showing that
the seasonal variation of the model is very similar to that of the SCTAMACHY
measurements. For certain locations, significant differences were found, which are
probably related to modelling errors owing to CO emission uncertainties (de Laat
et al. 2006; 2007). Validation of the measurements has been undertaken with FTIR
(Dils et al. 2006) and ship-borne observations (Warneke et al. 2005).

CO measurements are also available from AIRS (McMillan et al. 2005) and have
been used to look at long-range transport of pollution (Stohl et al. 2007; Zhang et al.
2008). Comparisons between AIRS CO and MOPITT and ground-based remote
sensing measurements have been made (Warner et al. 2007).

Recently, TES has provided profile measurements of CO (Rinsland et al. 2006b)
which have been validated against aircraft measurements (Luo et al. 2007a) and
MOPITT (Luo et al. 2007b) observations. Vertically-resolved CO concentration
profiles have been retrieved from ACE, extending from the mid-troposphere to the
thermosphere (from about 5 to 110 km) (Clerbaux et al. 2005; 2008c; Hegglin et al.
2008). Similarly, there are upper tropospheric CO measurements made from MLS
(Filipiak et al. 2005; Livesey et al. 2008; Pumphrey et al. 2007). Observations from
MLS have been used to show persistent maxima in CO and minima in O; within the
anticyclone in the upper troposphere-lower stratosphere (UTLS) throughout sum-
mer, and variations in these tracers are closely related to the intensity of underlying
deep convection (Park et al. 2007).

A range of new observations of CO are just becoming available from IASI
(Clerbaux et al. 2009).

a General Transport Phenomena

Owing to the nature of CO as a marker of anthropogenic pollution and biomass
burning, it has been used in a number of studies to assess the importance of
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transport pathways. The data has shown evidence of vertical transport of CO (Kar
et al. 2004) in the Asian summer monsoon. The transport pathways of CO in the
African upper troposphere during the West African monsoon have been investi-
gated through the assimilation of CO observations by the Aura Microwave Limb
Sounder (Barret et al. 2008). Assimilation of CO into a chemical transport model
was also used to evaluate spring time transport over West Africa (Pradier et al.
2006). MOPITT CO data in combination with trajectory analysis has been used to
show that transport from the tropics to the extratropics is a comparatively slow
process, giving rise to the appearance of “transport barriers” in the subtropics
(Bowman 2006).

Tropical climatologies of water vapour, Oz, CO, and nitric acid from a variety of
satellite, aircraft, and balloon-based measurement platforms have been used to test
convective parameterisations (Folkins et al. 2006a). Satellite and sonde observa-
tions have been use to explore the seasonal cycles of O3, CO and convective outflow
at the tropical tropopause (Folkins et al. 2006b). Bhattacharjee et al. (2007) have
explored the influence of a dust storm on CO and water vapour over the Indo-
Gangetic Plains showing that these can lift surface CO rapidly throughout the
troposphere.

An intriguing feature has been observed in daytime measurements of CO over
the Middle East during spring and summer. Enhanced CO is observed over the
Zagros Mountains of Iran, following the local topography over this region. It has
been argued that this feature is formed by the processes of mountain venting by
thermal winds caused by strong daytime differential heating (Kar et al. 2006).

b Hemispheric Transport of Air Pollution

Satellite CO data has found great utility in the investigation of the magnitude and
impact of the hemispheric transport of air pollution (Keating and Zuber 2007; Singh
et al. 2006). For example, Asian outflow and trans-Pacific transport of CO and O3
pollution has been tracked using an integrated satellite, aircraft and models (Heald
et al. 2003). High CO levels measured at surface background stations and by
satellite in/over China (Zhao et al. 2007) have been shown to arise from LRT of
biomass burning and biofuel burning areas located in the border areas of Pakistan
and India.

Satellite observations of CO columns from MOPITT and of aerosol optical
depths from MODIS have been useful in mapping North American pollution
outflow and the trapping of convectively lifted pollution by upper-level anti-
cyclones (Li et al. 2005). Guerova et al. (2006) have used a combination of models
and satellite data to assess the impact of transatlantic transport episodes on summer-
time O3 in Europe. Interlaced long-range pollution events of contrasting origin and
age the tropical Atlantic Ocean have been delineated with a combination of in situ
measurements, satellites, trajectories, emission inventories and global models (Gros
et al. 2004). A combination of two satellite CO measurements has been used to look
at long-range transport of CO over the land and ocean (Warner et al. 2007).
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Satellite CO data in combination with in sifu aircraft data and models has been
used to characterize the Asian chemical outflow and relate it quantitatively to its
sources as well as determining its chemical evolution during transport (Allen et al.
2004; Jacob et al. 2003). The relationship between satellite and in situ observations
of CO has been explored in pollutant outflow based on a large-scale feature sampled
over central northern Pacific (Crawford et al. 2004). Observations from multiple
satellite sources of CO (and other tracers) has been used to investigate emission and
export from Asia (Turquety et al. 2008) showing that, compared to observations,
there seem be an underestimation of emissions, especially in eastern Asia. Zhang
et al. (2008) used an ensemble of aircraft, satellite, sonde, and surface observations
to better understand the mechanisms for transpacific O5 pollution and its implica-
tions for North American air quality using CO measurements from TES and AIRS.

¢ Emission Estimates

CO measurements from space have been used to estimate global emission sources
of CO (Arellano et al. 2004; Lin et al. 2007; Petron et al. 2004; Stavrakou and
Muller 2006). There has been many attempts to look at regional emission budgets
for Europe (Pfister et al. 2004) and Asia (Heald et al. 2004; Peng and Zhao 2007;
Tanimoto et al. 2008; Yumimoto and Uno 2006). Emissions in Asia for a range of
compounds have been predicted to rise sharply owing to increasing industrialisation
(Monks et al. 2009).

For Asia, a combination of satellite and aircraft observations have been used to
derive estimates of emissions of 361 Tg y ' for CO (Heald et al. 2004). Tropo-
spheric CO budget analysis suggests that in northern China, surface emission is the
largest source of tropospheric CO (Peng and Zhao 2007). Further, model results
underestimate CO by 23% in northern China (Peng and Zhao 2007). Arellano et al.
(2004) noted that CO emissions in eastern Asia are about a factor of 1.8-2 higher
than bottom-up estimates. Adjoint inverse modelling of satellite CO data gives
annual anthropogenic (fossil and biofuel combustion) CO emissions over China of
147 Tg (Yumimoto and Uno 2006). Inverse estimates of the CO emissions from
China up to 2005 suggested an increase of 16% since 2001, in good agreement with
MOPITT satellite observations and the bottom-up estimates up to 2006 (Tanimoto
et al. 2008).

Global estimates for the total anthropogenic surface sources of CO (fossil fuel
+ biofuel + biomass burning) have been derived using inverse modelling of the
satellite observations (Petron et al. 2004; Yudin et al. 2004). From this approach
sources of CO (all in Tg(CO) per year) were determined to be 509 in Asia, 267 in
Africa, 140 in North America, 90 in Europe and 84 in Central and South America
(Petron et al. 2004). Emission changes in CO have been inferred from two sets of
satellite observations separated by 10 years (Shindell et al. 2005). In a case study
using SCIAMACHY CO, it has been possible to estimate the emission of CO on a
country scale for the UK (Khlystova et al. 2009).
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d Fires (Biomass Burning)

Biomass burning (BB) is a significant process in the earth system which, as a
stochastic process, is difficult to model. CO measurements from space have been
used for a range of scientific purposes such as the estimation of global biomass
burning emission sources of CO (Arellano et al. 2006), the identification of CO
plumes from forest fires (Lamarque et al. 2003; Lee et al. 2005) (see Table 8.1) and
the impact of biomass burning on regional air quality (Choi and Chang 2006a).

An extensive study has been undertaken by Edwards et al. (2006a) to investigate
southern hemisphere BB using a combination of satellite CO and aerosol measure-
ments coupled to models. Further in a separate study, Edwards et al. (2006b) used a
5 year CO data record to examine the inter-annual variability of the southern
hemisphere CO loading and show how this relates to climate conditions which
determine the intensity of fire sources. The observations showed an annual austral
springtime peak in the SH zonal CO loading each year with dry season BB
emissions in South America, southern Africa, the maritime continent, and north-
western Australia. Although fires in southern Africa and South America typically
produce the greatest amount of CO, the most significant interannual variation is due
to varying fire activity and emissions from the maritime continent (SE Asia
including the Philipines, Indonesia and Malaysia) and northern Australia (Edwards
et al. 2006b; Rinsland et al. 2008). In related work (Gloudemans et al. 2006), model
results show a large contribution of South American BB CO over Australian BB
regions during the 2004 BB season of up to 30-35% and up to 55% further south,
with smaller contributions for 2003. BB CO transported from southern Africa
contributed up to a similar to 40% in 2003 and around 30% in 2004 (Gloudemans
et al. 2006). Elevated SH upper tropospheric CO as well as a range of small
molecule organic tracers (C,Hg, HCN, and C,H,) has been detected from a combi-
nation of biomass burning emissions and long-range transport (Rinsland et al.
2005). A combination of ship-based FTIR observations and satellite observations
has been used to investigate the BB over the South Atlantic (Velazco et al. 2005)
with observations of recurring enhancements of CO in the upper troposphere
(10-15 km) in the equatorial regions and the South Atlantic.

Table 8.1 Overview of regionalised biomass burning episodes identified using CO from space

Fire Area Year Reference

Idaho-Montana Forest August 2000 Lamarque et al. (2003)

East coast of Korea April 2000 Choi and Chang (2006b)

N.W. USA Forest 2000 Liu et al. (2005)

SE Asia 2001 Zheng et al. (2004)

Russian Forest May 2003 Lee et al. (2005)

Russian Forest 2003 Generoso et al. (2007)

Central Asia 2003 Wang et al. (2006)

Alaska 2004 Pfister et al. (2005), Turquety et al. (2007)
Indonesia 2006 Rinsland et al. (2008)

European Arctic 2006 Stohl et al. (2007)
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Using MOPITT data and emission inversion techniques Pfister et al. (2005)
showed that the Alaskan wildfires of 2004 emitted 30 &= 5 Tg CO during June to
August 2004 which is comparable to the anthropogenic emissions of the continental
US. Similarly, Turquety et al. have shown the importance of peat burning and
pyroconvective injection (Turquety et al. 2007) for the same fires. Turquety et al.
(2007) have made an estimate of North American fire emissions during the summer
of 2004 to be 30 Tg CO, that includes 11 Tg from peat burning.

A temporary increase in northern hemispheric tropospheric CO burden in 2002
and 2003 (Yurganov et al. 2005) has been ascribed to boreal fires in Russia. Using
CO data from MOPITT and AIRS, Yurganov et al. (2008) have concluded that fires
can explain a substantial fraction of the interannual variability of CO,.

Large differences in CO and O3 have been measured over Indonesia and the
eastern Indian Ocean in October to December 2006 relative to 2005, in 2006 O3
was higher by 15-30 ppb (30-75%) while CO was higher by up to 80 ppb in October
and November, and about 25 ppb in December. These differences were caused
by high fire emissions from Indonesia in 2006 associated with the lowest rainfall
since 1997, reduced convection during the moderate El Nino, and reduced photo-
chemical loss because of lower H,O (Logan et al. 2008; Rinsland et al. 2008). Space-
based CO measurements and O3 sondes have been used to look at the spatial and
temporal variation of biomass burning over South Africa and South America
(Bremer et al. 2004).

The global impact of biomass burning is very much dependent on the injection
height and temporal nature of the fires. Satellite CO and surface measurements have
been used to examine the injection properties of boreal forest fires (Hyer et al.
2007a) as well as the effects of source temporal resolution on transport simulations
of the emissions (Hyer et al. 2007b).

Biomass burning is impacting the lower stratospheric composition. CO in the
lower stratosphere (LS) observed with the Aura Microwave Limb Sounder (MLS)
shows an annual oscillation in its composition that results from the interaction of an
annual oscillation in slow ascent from the TTL to the LS and seasonal variations in
sources, including a semi-annual oscillation in CO from biomass burning (Duncan
et al. 2007).

e Model Performance

CO measurements retrieved from satellite instruments have been used extensively to
assess model performance (Arellano et al. 2007; Bousserez et al. 2007). Twenty six
state-of-the-art atmospheric chemistry models have been run to study future air
quality and climate change. They were compared to near-global satellite observations
from the MOPITT instrument and local surface measurements for CO. The models
show large underestimates of northern hemisphere extratropical CO, while typically
performing reasonably well elsewhere. The results suggested that year-round emis-
sions, probably from fossil fuel burning in eastern Asia and seasonal biomass burning
emissions in southern and central Africa, are greatly underestimated in the current
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emission inventories. Variability among models was large, resulting primarily from
intermodel differences in representations and emissions of nonmethane volatile
organic compounds and in hydrologic cycles, which affect OH and soluble hydrocar-
bon intermediates (Shindell et al. 2006).

A combination of satellite measurements and models have been used to make a
comparison of the chemical nature of air pollution in eastern China and the eastern
United States (Tie et al. 2006) highlighting the difference in influence of biogenic
and anthropogenic hydrocarbons in both regions. More detailed studies in the same
vein have looked at Eastern China (Zhao et al. 2006) showing that during summer,
local emissions produce about 50-70% of the O3 concentration in eastern China.
Kar et al. (2008) have used multiple satellite measurement to map the air pollution
over the Indo-Gangetic basin.

8.2.4 Formaldehyde, HCHO

HCHO is an important intermediate formed in the oxidation of CH, and many other
hydrocarbons. The two major loss processes for HCHO, namely photolysis and reaction
with OH are relatively fast giving an atmospheric lifetime of typically a few hours.
Owing to its high water solubility HCHO can also be removed by wet deposition.

Much of the focus of HCHO measurements from space has been in using it as a
proxy measure for isoprene emissions (Palmer et al. 2003). Isoprene can be the
dominant precursor of HCHO in regions with strong biogenic emissions and its
relatively short lifetime (<1 h) means that emissions of the precursor can be
localised. The approach has been used to look at seasonal and annual variability
in isoprene emissions over the USA (Abbot et al. 2003; Chance et al. 2000; Millet
et al. 2008; Palmer et al. 2006), Asia (Fu et al. 2007), Africa (Meyer-Arnek et al.
2005a), Europe (Dufour et al. 2009), tropical regions (Palmer et al. 2007) and
globally (Shim et al. 2005). In Asia, the approach was also extended to constrain
emissions of alkenes and xylenes as well as the influence of biomass burning (Fu
et al. 2007). Work in Europe (Dufour et al. 2009) has demonstrated that the
methodology can be extended to regions without “strong” emissions of isoprene.

In combination with other tracers HCHO has been used to trace pollution over
the Mediterranean (Ladstatter-Weissenmayer et al. 2003), detect biomass burning
over south-eastern Asia (Thomas et al. 1998), quantify the influence of boreal forest
fires (Spichtinger et al. 2004), estimate O3 production sensitivities (Martin et al.
2004a), quantify biogenic and biomass burning budget contributions over Africa
(Meyer-Arnek et al. 2005a), constrain tropical tropospheric O3 (Sauvage et al.
2007) and correlate with ground-based data in the south-eastern USA (Martin
et al. 2004b). Space-based HCHO measurements have recently been combined
with glyoxal (see Section 8.2.5) measurements (Wittrock et al. 2006). Marbach
et al. (2009) to report on enhanced HCHO column density over a ship track in the
Indian Ocean. De Smedt et al. (2008) (Fig. 8.5) have derived a 12 year dataset of
HCHO from GOME and SCIAMACHY.
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Fig. 8.5 Yearly averaged GOME HCHO columns from 1997 to 2002 (units are 10'> molecule/cm?)
(left) and SCIAMACHY 2003 to 2007 (right) (De Smedt et al. 2008).

HCHO measurements have also been made in the upper troposphere from ACE-
FTS and MIPAS (Coheur et al. 2007; Steck et al. 2008). Upper tropospheric HCHO
in combination with a range of other trace organics has been used to characterise
biomass burning plumes (Coheur et al. 2007).

8.2.5 Glyoxal, CHOCHO

CHOCHO is the smallest a-dicarbonyl, an oxidation product of numerous VOC
(Volkamer et al. 2001). Direct and time resolved CHOCHO measurements can
provide a useful indicator to constrain VOC oxidation processes (Volkamer et al.
2005) owing to the mixture of anthropogenic and biogenic sources. The atmo-
spheric residence time of CHOCHO is limited by rapid photolysis and reaction with
OH radicals, and is about 1.3 h for overhead sun conditions (Volkamer et al. 2005).
There are some indications that CHOCHO possibly contributes to secondary
organic aerosol (SOA) formation (Liggio et al. 2005a; 2005b; Volkamer et al.
2007). However, the atmospheric relevance of CHOCHO uptake on aerosols is
presently not clear. Global observations of CHOCHO from space offer the potential
of identifying photochemical hot spots in the Earth’s atmosphere, and, coupled with
observations of HCHO, improve the understanding of biogenic emissions, biomass
burning, and urban pollution.

Wittrock et al. (2006) demonstrated the first measurements of CHOCHO from
space. The global pattern of CHOCHO columns was found to be similar to that of
HCHO, indicating common atmospheric sources, in particular (biogenic) isoprene.
The ratio between CHOCHO and HCHO was found to be about 0.05 in source
regions such as the tropical rain forests. At some locations, larger ratios are
found and this is attributed to unidentified additional sources of CHOCHO. Large
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CHOCHO columns are found primarily over areas having strong biogenic emis-
sions in the tropics which appear to be the dominant global source. During strong
biomass burning events, CHOCHO was clearly observed from fires in Alaska
(Fig. 8.6)(Wittrock et al. 2006).

| vc HCHO |
[molec cm™]

Fig. 8.6 Yearly mean for (a) glyoxal and (b) formadelyde derived from SCIAMACHY observa-
tions in 2005. The sub figures (c—e) show the ration between glyoxal and formaldehyde (Wittrock
et al. 2006).

Five years worth of data has been compiled (Vrekoussis et al. 2009) and the
largest columns are seen in tropical and sub-tropical regions associated with high
biological activity and the plumes from vegetation fires. The majority of the
identified hot spots are characterized by a well-defined seasonality: the highest
values being observed during the warm and dry periods as a result of the enhanced
biogenic, primarily isoprene, emissions and/or biomass burning from natural or
man-made fires. The regions influenced by anthropogenic pollution also encounter
enhanced amounts of CHOCHO. There is growing evidence for a potential marine
source of CHOCHO (Fu et al. 2008).

8.2.6 Sulfur Dioxide, SO,

Sulfur chemistry is an integral part of life, owing to its role in plant and human
metabolism. Sulfur compounds have both natural and anthropogenic sources in the
atmosphere. In modern times, the atmospheric sulfur budget has been dominated by
anthropogenic emissions, particularly from fossil fuel burning. It is estimated that
75% of the total sulfur emission budget (ca. 102 Tg S per year) is dominated by
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anthropogenic sources with 90% of it occurring in the northern hemisphere. The
natural sources include volcanoes, plants, soil and biogenic activity in the oceans.

The oxidation of sulfur compounds in the atmosphere causes a number of
different environmental problems such as acidification, climate balance and the
formation of a sulfate layer in the stratosphere, the so-called Junge layer. By far the
largest sulfur component emitted into the atmosphere is SO,. Coal and oil combus-
tion contribute up to 80% of the global budget of SO, while volcanoes contribute
around 10% (Bates et al. 1992).

Satellite measurements of tropospheric SO, (and ash) have seen extensive
application to identification and quantification of volcanic emissions (Table 8.2).
Most of the early measurements (Krueger 1983; Krueger et al. 1995) came from
the TOMS instrument whose functionality has been recently extended to OMI
(Yang et al. 2007). Authors have demonstrated that the combination of different
satellite sensors can give a more holistic chemical and physical picture of volcanic
eruptions (Eckhardt et al. 2008; Prata et al. 2007). In particular the use of instru-
ments with sensitivity to the mid-/upper-troposphere have been demonstrated as

Table 8.2 Application of tropospheric satellite SO, measurements to volcanic emissions

Volcano Year(s) of Eruption(s) Satellite References

Anatahan 2003 TOMS/ASTER Wright et al. (2005)
Anatahan 2003-2004 TOMS Guffanti et al. (2005)
Anatahan 2003 TOMS Pallister et al. (2005)

Etna 2001 GOME Zerefos et al. (2006)

Etna 2001 & 2002 GOME Thomas et al. (2005)

Etna 2002 AIRS Carn et al. (2005)

El Chichon 1982 TOMS Seftor et al. (1997)
Galunggung 1982-1983 TOMS Bluth et al. (1994)

Hekla 1980, 2000 TOMS Sharma et al. (2004)
Karthala 2005 SEVERI Prata and Kerkmann, (2007)
Jebel at Tair 2007 TASI Clarisse et al. (2008)

Jebel at Tair 2007 AIRS/OMI Eckhardt et al. (2008)
Krafla 1984 TOMS Sharma et al. (2004)
Manam 2005 OMI/TES Clerbaux et al. (2008a)
Mauna Loa 1984 TOMS Sharma et al. (2004)
Miyakejima 2000 ASTER Urai (2004)

Multiple (20) 19962002 GOME Khokhar et al. (2005)
Nyamuragira 1978-2002 TOMS Carn and Bluth (2003)
Nyamuragira 1996 GOME Eisinger and Burrows (1998)
Nyamuragira 2006 OMI; TES Clerbaux et al. (2008a)

Mt. Spurr 1992 TOMS Rose et al. (2001)

Mt. St. Helens 1991 TOMS Bluth et al. (1992)

Pinatubo 1991 TOMS/TOVS Guo et al. (2004)
Popocatepetl 1996 GOME Eisinger and Burrows (1998)
Popocatepetl 2000-2001 MODIS Novak et al. (2008)

Rabual 2006 TES Clerbaux et al. (2008a)
Redoubt 1989-1990 TOMS Schnetzler et al. (1994)
Soufriére Hills 2006 OMI/AIRS Prata et al. (2007)
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a way of ascertaining injection height (Ackerman et al. 2008; Prata and Bernardo
2007). The emission of bromine compounds from volcanoes is dealt with in
Section 8.2.12. There are practical uses of satellite imagery for protecting interna-
tional airways from volcanic ash (Tupper et al. 2004).

Owing to the relatively low sensitivity of SO, measurements from space there
are few reports on anthropogenic sources. Eisinger and Burrows detected wide-
spread SO, (Eisinger and Burrows 1998) over south-eastern Europe that they
attributed to lignite coal-burning in power plants and these data have been used
by Zerefos et al. (2000) to attribute the different sources of SO, over Greece. Strong
point source emissions such as Peruvian copper smelters (Carn et al. 2007) and a
fire at an Iraqi sulfur plant has been identified (Carn et al. 2004). Lee et al. (2008)
have used a combination of in-sifu, ground-based remote sensing and satellite data
to follow and attribute the long-range transport of SO, from China to Korea, while
Krotkov et al. (2008) have used a combination of aircraft and OMI data to validate
SO, pollution over north-eastern China. Khokhar et al. (2008) have analysed time
series of SO, from GOME over non-ferrous metal smelters in Peru and Russia.

8.2.7 Ammonia, NH3

The global emission of NH; is about 54 Mt Ny~ '. The major global sources are
excreta from domestic animals and fertilizers, but oceans, biomass burning and
crops are also important (Asman et al. 1998; Schlesinger and Hartley 1992). About
60% of the global NH; emission is estimated to come from anthropogenic sources.
Boundary layer NH3 concentrations can vary widely as NHj is readily absorbed by
surfaces, and reacts with OH and acidic aerosols leading to a rather short atmo-
spheric lifetime in the order of a few hours (Dentener and Crutzen 1994).

The first tropospheric NH3; measurements from space were made by Beer et al.
(2008) using data from TES. NH; concentrations over China ranged from 5 to
almost 25 ppb, while over North America they were consistently less than 5 ppb.
Significant spatial variations were observed over China. The authors note that that
the next step is to globalise these observations to understand regional and temporal
variations. Recent results from TASI (Clarisse et al. 2009) have demonstrated the
first global pictures of NHj3 from space (Fig. 8.7). The strong fires that have
occurred in the Mediterranean Basin, and particularly Greece in August 2007,
and those in southern Siberia and eastern Mongolia in the early spring of 2008
have shown strong NH;3 biomass burning signatures (Coheur et al. 2009).

8.2.8 Carbon Dioxide, CO,

CO, is the ultimate form of oxidised carbon in the Earth’s atmosphere. Much focus
in recent times has been on the anthropogenic driven growth in CO, concentration
and as a source of carbon for plants. In the modern epoch the concentration of CO,
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Fig. 8.7 (Top) Yearly average total columns of NH3(mg/m2) in 2008 retrieved from IASI
measurements on a 0.25° by 0.25° grid. (Bottom) NHj concentrations derived from IASI observa-
tions above the Po Valley. The aerial photographs are ©2008 Google — Imagery ©2008 Terra-
metrics (http://maps.google.com/). Both adapted from Clarisse et al. (2009) (Reprinted by
permission of Macmillan Publishers Ltd).

has increased from pre-industrial values of about 280 ppm to values in excess of
380 ppm today. The current concentrations far exceed values inferred from ice
cores for the last 650,000 years. The main sinks for atmospheric CO, are oceanic
and uptake by the terrestrial biosphere.

The first measurements of CO, from space (Chedin et al. 2002; 2003; 2005;
2008; Peylin et al. 2007) were mid-tropospheric measurements made in the thermal
infrared from TIROS-N/TOVS on NOAA-10. The data were collected for 4 years
(1987-1991) and have been used to estimate the influence of tropical biomass
burning on mid-tropospheric CO, (Chedin et al. 2005; 2008).

AIRS is a thermal infrared spectrometer/radiometer (see Chapters 1 and 3)
(Aumann et al. 2003) the data from which a number of authors have used to
demonstrate and validate methods for retrieving mid-tropospheric CO, (Aumann
et al. 2005; Chahine et al. 2005; Crevoisier et al. 2004; Engelen et al. 2004; Engelen
and McNally 2005; Maddy et al. 2008; Tiwari et al. 2006).



384 P.S. Monks and S. Beirle

Buchwitz et al. (2005a; 2005b; 2006) retrieved full tropospheric columns of CO,
from SCIAMACHY in the short-wave infrared for the first time giving a view of
surface CO, owing to the enhanced sensitivities at these wavelengths. The data
have been used to map out the increasing trend in global CO, from space (Buchwitz
et al. 2007b; Schneising et al. 2008). Barkley et al. (2006a; 2006b; 2006c¢; 2007)
have extended the Buchwitz methodology looking at assessing validity with a
combination of surface, aircraft and model data. Further, they have demonstrated
spatial and temporal correlations between SCTAMACHY data more sensitive to
surface CO, and mid tropospheric data from AIRS over North America (Barkley
et al. 2006b) and interesting correlations of CO, with surface and vegetation type
(Barkley et al. 2006¢, 2007) (Fig. 8.8).
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Fig. 8.8 SCIAMACHY CO, observations over North America for July 2003 (/eft) with a map of
land vegetation cover over this scene (right) (Barkley et al. 2006¢). The transition from low CO,
VMRs along the Canadian shield and the eastern coast to the higher values over the mid-western
US corresponds to a change in the vegetation type from evergreen needle leaf, mixed and
deciduous broadleaf forests to land covered by crops and large grass plains.

Much of the effort in measurement of tropospheric CO, from space has been
focussed on the precision and accuracy of the measurements, owing to the over-
whelming need to use these measurements in an inverse mode to assess emissions.
The measurements are being supplemented by new ones from specially designed
sensors i.e. GOSAT (Hamazaki et al. 2004) and from the second version of OCO
(the first instrument was lost in launch) (Crisp et al. 2004).

8.2.9 Methane, CH,

CH, is the second most important anthropogenic greenhouse gas. It also has an
indirect effect on climate through chemical feedbacks. More than 50% of present-
day global CH4 emissions are anthropogenic, the largest contributors being fossil
fuel production, ruminants, rice cultivation, and waste handling (Bergamaschi et al.
2007). CHy levels have almost doubled since preindustrial times. The natural source
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strength of CH,4, mainly constituted by emission from wetlands, is particularly
uncertain, because these emissions vary considerably in time and space. The
dominant atmospheric sink for CH, is reaction with OH. Available ground-based
measurements are sparse, albeit precise, and limitedly representative at larger
scales (Walter et al. 2001). Better knowledge of CH, distribution and emissions
is indispensable for a correct assessment of its impact on global change.

Measurements of CH; from SCIAMACHY show the expected latitudinal
gradient (NH 10% > SH) with large-scale patterns of anthropogenic and natural
CH, emissions (Buchwitz et al. 2005a; 2005b; Frankenberg et al. 2005a; 2006;
Schneising et al. 2009; Straume et al. 2005).

Frankenberg et al. (2005a; 2006) using SCIAMACHY data observed pro-
nounced enhancements of CH, in the Red Basin of China and in large areas of
Asia in general, followed by northern parts of South America and central Africa. In
particular, high mixing ratios in Columbia and Venezuela are larger than given by
the CH, inventories. The largest seasonal variations are caused by rice emissions in
Asia, which are very intense during a relatively short time period. The measure-
ments indicate that these emissions already start towards the end of July and decline
sharply in November, which is earlier than predicted by the model based inven-
tories. Strong deviations between observed and modelled CH, abundances in
tropical rainforest regions are observed, hinting at underestimated tropical emis-
sions (Frankenberg et al. 2005a; 2006). This observation has been much debated in
the context of the occurrence and role of plants in the production of CH, (Dueck
and van der Werf 2008). Frankenberg et al. (2008) have recently reinvestigated the
relevant CHy spectroscopy which may have introduced some biases into the initial
retrievals. Separate data from Schneising et al. (2009) still show higher CH,4 over
the tropics compared to a model. Upper tropospheric CH, profiles have been
retrieved from a number of satellites including most recently ACE-FTS and
MIPAS (De Maziere et al. 2008).

8.2.10 Water, H,0O

H,0 and the hydrological cycle are key elements of the earth system. As well as
being key to life on Earth it is a major part of the climate system. More than 99% of
the atmospheric H,O is found and exists in all three phases in the troposphere. H,O
enters the atmosphere by evaporation mostly over the oceans, but also by transpi-
ration from plants over the continents. The evaporation flux is balanced by the
return of H,O to the surface by various forms of precipitation. In the vapour phase,
H,O can be transported several thousands of kilometres before condensing which
leads to greater precipitation than evaporation over the continents, the net balance
being provided by surface flow of H,O. The lifetime of a H,O molecule in the
atmosphere is estimated to be about 10 days.

Noel et al. (1999; 2002) have retrieved total H,O column measurements from
GOME-1 using DOAS in the 700 nm region and Maurellis et al. (2000) in the
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585-600 nm region. Such column data have been validated against microwave
measurements from SSM/I. Wagner et al. (2005; 2006) have used a similar
approach to look at trends in total column precipitable water over the period
1996-2003. In general, the trends showed a strong correlation with near surface
temperature though not always over land in the northern hemisphere (Wagner et al.
2006). Mieruch et al. (2008) have observed increasing water trends in GOME-1
data for Greenland, eastern Europe, Siberia and Oceania, whereas decreasing trends
have been observed for the northwest USA, central America, Amazonia, central
Africa and the Arabian Peninsula. Lang et al. (2007) have evaluated the GOME
water climatology against independent in-situ measurements from the operational
WMO radio-sonde network, against high spatial resolution H,O vapour columns
from MERIS and with ERA40 model results.

The GOME-1 H,O column series from UV/VIS data have been extended to
SCIAMACHY (Noel et al. 2004; 2005) and more recently the operational GOME-2
instrument (Noel et al. 2008). Recently, nadir measurements from TES have been
used to retrieve water profiles (Shephard et al. 2008). A study of the 2006 EI Nino
(Logan et al. 2008) showed a movement in H,O vapour owing to eastward move-
ment of convection during El Nino leading to higher H,O over eastern Africa and
the western Indian Ocean. Similar results have been found by Wagner et al. (2005)
for H>,O column anomalies for the El Nino 1997/1998 in GOME data.

Isotopologue measurements of H,O are becoming available e.g. HDO (Herbin
et al. 2007; Steinwagner et al. 2007; Zakharov et al. 2004; Frankenberg et al. 2009)
(see Section 8.2.16). The use of such measurements are explained in Monks et al.
(2009).

Microwave retrievals of H,O vapour are dealt with in Chapter 4.

8.2.11 Bromine Monoxide, BrO

In comparison to the chemistry taking place in the stratosphere where halogen
chemistry is well known and characterised, there has been much debate as to the
role of halogen species in the oxidative chemistry of the troposphere (Platt and
Honninger 2003). There is growing experimental evidence about the prevalence of
halogen chemistry as part of tropospheric photochemistry (Platt and Honninger
2003; Read et al. 2008; Saiz-Lopez et al. 2007b; Simpson et al. 2007). Much of the
proposed halogen chemistry is propagated through the reactions of a series of
halogen atoms and radicals (Monks 2005).

BrO species can be formed in the polar boundary layer (Barrie et al. 1988; Fan
and Jacob 1992; Saiz-Lopez et al. 2007b), mid-latitude marine boundary layer
(Saiz-Lopez et al. 2004; 20006), salt pans (Hebestreit et al. 1999) as well as in
volcanic emissions (Bobrowski et al. 2003). There are claims that BrO is omnipres-
ent in the atmosphere (Hegels et al. 1998).

The major source of gas-phase bromine in the lower troposphere is thought to be
the release of species such as IBr, ICl, Br, and BrCl from sea-salt aerosol, following
the uptake from the gas-phase and subsequent reactions of hypohalous acids (HOx,
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where X = Br, Cl, I) (Vogt et al. 1996). The halogen release mechanism is
autocatalytic (Fan and Jacob 1992) and has become known as the ‘“bromine
explosion” (Platt and Lehrer 1997). The initiation of the BrO chemistry is relatively
simple:

BrX +hy — Br+X 8.1)
Br+ 03 — BrO + 0, (8.2)

The chemistry of halogen radicals has been recently reviewed by Monks (Monks
2005) and the impact of BrO chemistry by Simpson et al. (2007) and von Glasow
et al. (2004).

The space-based measurements have clearly illustrated the spatial extent of the
BrO in the Antarctic and Arctic boundary layer in spring (Richter et al. 1998;
Wagner et al. 2001; Wagner and Platt 1998) (See Fig. 8.9). Various authors using
the space-based data have investigated trends (Hollwedel et al. 2004), long-range
transport of BrO, (Ridley et al. 2007), the correlation with surface remote sensing
measurements (Theys et al. 2007; Wagner et al. 2007), assessment with hydrocar-
bon-loss methods (Zeng et al. 2006), the role of the marginal ice zone (Jacobi et al.
2006) and total columns over Arrival Heights (Antarctica) during sunrise (Schofield
et al. 2006).

GOME BrO, Mar 2000 GOME BrO, Oct 1999
BrOVC

x10" molecicm?)

BrO VC
[x10" moleciem?)

DLR
ESA-ESRIN
BIRA-ASB

.“_- GWInDOAS 1.02, Oct. 2000 Contact : michelv@oma.be
1ASB-BIRA

Fig. 8.9 BrO in the Antarctic and Arctic during spring derived from GOME satellite measure-
ments (Van Roozendael et al. 2002).

BrO has been detected, probably in the free troposphere, outside polar regions
such as over the Maldives (Ladstatter-Weissenmayer et al. 2007a), mid-latitudes
(Van Roozendael et al. 2002) and globally (Hegels et al. 1998). The impact of these
observations on, for example, the O3 budget of the troposphere (von Glasow et al.
2004) remains an open question.

Space based measurements have been used to survey the BrO emissions
from volcanoes (Afe et al. 2004). There is some debate as to whether there is an
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expectation that the BrO emissions should be correlated with SO, emissions (Afe
et al. 2004). An unambiguous detection of volcanic BrO was possible for the 2008
eruption of the Kasatochi volcano in Alaska (Theys et al. 2009).

8.2.12 Iodine Monoxide, 10

IO has been detected by ground-based measurements both in the marine boundary
layer (Alicke et al. 1999; Allan et al. 2000), the Dead sea (Zingler and Platt 2005)
and the Antarctic boundary layer (Friess et al. 2001; Saiz-Lopez et al. 2007b). The
major sources of iodine into the troposphere are thought to be from macroalgal
sources releasing either molecular iodine and/or organoiodine compounds (Carpenter
2003). Photolysis of I, and the organo-iodine compounds releases the iodine.

RI+hv —R+1 (8.3)
[+0; > 10+0, (8.4)

During daylight hours IO exists in a fast photochemical equilibrium with
iodine viz:

I0O+hv —-1+0 (8.5)

The aerosol “explosion” mechanism, previously described for bromine, acts
effectively to recycle the iodine back to the gas-phase (Platt and Honninger
2003). The potential impact of this chemistry has been demonstrated by Read
et al. (2008) who have shown evidence for widespread destruction of tropical O;
by bromine and iodine monoxides.

Saiz-Lopez et al. (2007a) and Schonhardt et al. (2007) first derived 10 from
SCIAMACHY measurements. There are significant differences between the two
retrievals with Saiz-Lopez et al. observing IO above cloudy regions whereas
Schonhardt et al. see negligible I0. Schonhardt et al. (2008) have produced the
first global pictures of I0. Figure 8.13 shows the global measurements of IO and
Fig. 8.10 shows measurements over Antarctica.

From space, the largest amounts of IO have been detected in springtime over
the Antarctic. The seasonal variation of IO in Antarctica showed high values
in springtime, slightly less 1O in the summer period and again larger amounts in
autumn (Schonhardt et al. 2008). In winter, no elevated 10 levels were found in the
areas accessible to the satellite measurements. The observed satellite seasonal cycle
is in good agreement with recent ground-based measurements in Antarctica (Friess
et al. 2001; Saiz-Lopez et al. 2007b). Conversely, in the Arctic region, no elevated
IO levels were detected in the period analysed. Schonhardt et al. (2008) suggest that
this observation is evidence for different conditions with respect to iodine release in
the two polar regions.
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SCIAMACHY IO Mar - May 2005 SCIAMACHY IO Jun - Aug 2005

SCl1o

[molec cm?]
1.0 10"
9.010"
8.010"
7.010%
6.0 10"
5.010"
4.010%
3.010"
0.0 10%

-5.0 102

Fig. 8.10 Seasonally averaged slant column amounts of 10 above the southern hemisphere from
Antarctic autumn to summer (Schonhardt et al. 2008). Maxima of IO columns occur over the
Weddell Sea, the Ross Sea and along the coast especially in spring and in autumn with levels
remaining positive at some places throughout the summer.

8.2.13 Methanol, CH;0H

CH;0H is the most abundant oxygenated hydrocarbon gas in the atmosphere
and is therefore a major contributor to non-methane volatile organic compounds,
NMVOC (Singh et al. 1995). The primary source of atmospheric CH;OH is plant
growth and decay, the second largest source is atmospheric production with minor
sources from biomass burning and anthropogenic emissions (Jacob et al. 2005).
There is considerable uncertainty in the atmospheric CH;0H budget. In the remote
troposphere, CH;0H concentrations are 0.1-1 ppb (Singh et al. 1995) while the
concentrations in the continental boundary layer are an order of magnitude larger.
The atmospheric lifetime is about 16 days in the free troposphere owing, primarily,
to OH oxidation to produce HCHO (Singh et al. 1995).

The first lower troposphere measurements of CH3;OH have been demonstrated
by Beer et al. (2008) from TES. Upper tropospheric measurement of CH;0H have
been made by IR occultation from ACE-FTS (see Fig. 8.11) (Dufour et al. 2006; 2007).
Dufour have shown the utility of the limb measurements of CH;OH measurements
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Fig. 8.11 Time series of ACE-FTS measurements of methanol for sunsets between 30th
September and 6 October 2004 (Dufour et al. 2006). The latitude and time of each individual
measurement are shown at the top of the panel.

in the upper troposphere for quantifying surface budgets and the influence of
biomass burning (Dufour et al. 2007).

8.2.14 Nitrous Oxide, N,O

N,O is the fourth largest single contributor to positive radiative forcing and serves
as a long-lived marker of the anthropogenic influence of the N-cycle. Atmospheric
concentrations have risen by 16% since pre-industrial times to a value of around
319 ppbV. N,O0 is also the main source of NOj to the stratosphere. N,O is mainly
produced by microbial nitrification and denitrification processes in soils and water.
Owing to its long atmospheric lifetime (ca. 1 century) the mixing ratio of N,O
shows very little spatial variation, <1%, throughout the troposphere.

There have been relatively limited measurements of full tropospheric column
N,O from space. Estimates in validation exercises suggest precisions in the order of
20% (Piters et al. 2006). Comparisons of early products with FTIR measurements
showed agreement within 13% (Dils et al. 2006). Measurements on a ship-borne
FTIR campaign showed a strong deviation (ca. 30%) between the satellite and ship
based data (Warneke et al. 2005). All of these studies make the point that the
datasets are not large enough to draw any statistical significance and that there is
room for further improvement in the retrievals.
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8.2.15 Nitric Acid, HNO3

HNOs; is the end point of NO, chemistry in the atmosphere (see also Section 8.2.2)
(Monks 2005). The dominant HNOj sink is wet removal (contributing to acid
deposition) and dry deposition.

First global distributions of HNO;5 in the troposphere and the stratosphere
derived from IR satellite measurements have been measured recently from IMG-
ADEOS (Wespes et al. 2007) (Fig. 8.12).

20

—
[&]

HNO4 tropospheric column

(105 molecules/cm?)

(&)}

0

Fig. 8.12 Global distribution of HNOj5 in the troposphere (0—10 km), in 10" molecules/cm?.
Data are averaged on a 15° x 12° grid (Wespes et al. 2007).

There are also several upper tropospheric measurements (Table 8.3). A number
of satellite measurements including those of HNOj5 have been used for space-based
constraints on the production of NO, by lightning (Martin et al. 2007).

8.2.16 Other Trace Species

There are a plethora of organic compounds in the atmosphere. The atmospheric
budget is controlled by a combination of anthropogenic and natural (frequently
biogenic) emissions tensioned against atmospheric chemical loss processes (pho-
tolysis or reaction with atmospheric oxidants) or physical loss (mainly heteroge-
neous removal). Many of these organic compounds are intrinsically linked to the
chemistry that controls the global oxidising ability. A range of mainly small
lightweight hydrocarbons have been measured in the upper troposphere such as
C,H, (Park et al. 2008; Rinsland et al. 2005; 2007b), C3H4 (Coheur et al. 2007)
and C,Hg (Clarmann et al. 2007; Park et al. 2008; Rinsland et al. 2005; 2007b).
The oxygenated compounds measured in the upper troposphere have been acetone
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(CH3COCH;) (Coheur et al. 2007), formic acid (HCOOH) (Rinsland et al. 2006a;
2007b) and H,0, (Rinsland et al. 2007a). Oxidised and reduced nitrogen com-
pounds measured in the upper troposphere are peroxyacetylnitrate (PAN) (Coheur
et al. 2007; Glatthor et al. 2007), HO,NO, (Stiller et al. 2007), HCN (Park et al.
2008; Rinsland et al. 2005; 2007b). Upper tropospheric inorganic compounds such
as OCS (Barkley et al. 2008a; Rinsland et al. 2007b), SF¢ (Rinsland et al. 2007b),
HCl (Mahieu et al. 2008; Senten et al. 2008) and HDO (Herbin et al. 2007,
Steinwagner et al. 2007; Zakharov et al. 2004) have also been measured.

There are a range of CFC and HCFC compounds that have been measured in the
upper troposphere, namely, CFC-11 (Coheur et al. 2003; Hoffmann et al. 2005,
2008; Mahieu et al. 2008), CFC-12 (Coheur et al. 2003; Hoffmann et al. 2005;
Mabhieu et al. 2008), CFC-113 (Coheur et al. 2003; Dufour et al. 2005), HCFC-142b
(Dufour et al. 2005) and HCFC-22 (Coheur et al. 2003; Moore and Remedios 2008).
Moore and Remedios (2008) used a combination of two satellite systems to derive a
mean northern hemisphere mid-latitude (20-50°N) HCFC-22 growth rate between
1994 and 2003 of 5.4 + 0.7 pptv per year and a mean southern hemisphere growth
rate (60—80°S) of 6.0 4= 0.7 pptv per year in the same period.

There have been important applications of upper tropospheric trace organics to
mapping the age and composition of biomass burning plumes (Coheur et al. 2007;
Dufour et al. 2006; Rinsland et al. 2005). H,O, has been detected in young biomass
burning plumes in the tropics (Rinsland et al. 2007a). A HCOOH emission factor
relative to CO of 1.99 £ 1.34 g/kg during 2004 in upper tropospheric biomass
burning plumes is inferred from a comparison with lower mixing ratios measured
during the same time period (Rinsland et al. 2006a). Upper tropospheric CO, C,He,
HCN, CH;Cl, CH,, C,H,, CH;0H, HCOOH, and OCS measurements show enhance-
ment in biomass burning plumes of up to 185 ppbv for CO, 1.36 ppbv for C,Hg,
755 pptv for HCN, 1.12 ppbv for CH5Cl, 0.178 ppbv for C,H,, 3.89 ppbv for CH;0H,
0.843 ppbv for HCOOH, and 0.48 ppbv for OCS in western Canada and Alaska at
50°—68°N latitude between 29 June and 23 July 2004 (Rinsland et al. 2007b).

Enhancements of C,Hg and O3 observed in the southern hemisphere have been
attributed to a biomass burning plume, which covers wide parts of the southern
hemisphere, from South America, the Atlantic Ocean, Africa, the Indian Ocean to
Australia. The chemical composition of the part of the plume-like pollution belt
associated with South American fires, where rainforest burning is predominant,
appears to differ from the part of the plume associated with southern African
savannah burning. In particular, African savannah fires lead to a larger O; enhance-
ment than equatorial American fires (Clarmann et al. 2007). At the end of the
biomass burning season in South America and South and East Africa, elevated PAN
amounts of 200-700 pptv were measured in a large plume extending from Brazil
over the South Atlantic, central and South Africa, the southern Indian Ocean as far
as Australia at altitudes between 8 and 16 km (Glatthor et al. 2007).

Park et al. (2008) have used speciated data to investigate the role of the Asian
monsoon as a transport barrier from the upper troposphere to the lower stratosphere,
the range of chemical tracers being able to tag different air masses origins and
quantify photochemical lifetimes.
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8.3 Satellite Observations of Tropospheric Composition:
What Can We Learn?

Satellite observations have for the first time provided simultaneous global measure-
ments of several important tropospheric trace gases. These datasets open new
horizons in atmospheric science. Characteristic spatial and temporal patterns allow
the identification, location, and quantification of different sources to study phenom-
ena such as transport or trends.

The comparison of satellite measurements with CTMs/GCMs provides a sub-
stantive challenge to the models. The measurements help to constrain the models
and the comparisons indicate the shortcomings of both measurements and models.
The applications involving models are discussed in Chapter 9. However, in the
following sections we highlight the potential of satellite based trace gas measure-
ments to investigate several central questions in tropospheric chemistry research.

8.3.1 Column Density Maps as Proxies for Emissions

Global maps of tropospheric trace gases, as shown in Fig. 8.13, impressively
illustrate the power of tropospheric satellite measurements. The spatial patterns
of column densities are determined by (1) sources of the respective trace gas,
(2) transport and (3) the lifetime. Enhanced column densities indicate source
regions, where spatial patterns are most distinct for short lifetimes.

Thus, to start with a straightforward application, column densities serve as a
first-order proxy of emissions. For example, this is particularly distinct in the case
of NO,, owing to the sensitivity of UV/VIS satellite measurements to the lower
troposphere and the short lifetime of NOy, of only a few hours, in the boundary
layer, leading to high spatial gradients (Fig. 8.13b). As a consequence, besides the
regions of high population density paired with industrial activity, like the US East
coast, western Europe, or eastern China, where column densities are generally high,
Megacities like Los Angeles, Mexico City, Moscow, Seoul, or Tokyo, clearly show
up as “hot spots”. Even emissions from ships can be recognized for the highly
frequented route between Sri Lanka and Indonesia (Beirle et al. 2004a; Richter et al.
2004). The emissions from other NO, sources, i.e. biomass burning, soil emissions,
and lightning, are less localized and the respective columns are therefore smeared
out over large areas in a multi-annual mean.

Similarly, different sources can be identified in the global maps for other trace
gases as well. Anthropogenic emissions can also clearly be seen in the maps for CO
(Fig. 8.13c) and SO, (Fig. 8.13f), particularly over eastern Asia, though the life-
times of these gases are generally higher than for NO,, and signals are thus less
localized. Nevertheless, maps of mean SO, show sharp peaks over copper smelters
in Peru (Fig. 8.14). Also recent maps of NHj; (see Fig. 8.7) show global distributions
in relation to strong source regions.
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Fig. 8.13 Atlas of tropospheric species observed from space. (a) Mean summer column densi-
ty of tropospheric O3 (DU) from TOMS measurements 1979-2005. Data provided by Jack
Fishman (Fishman et al. 2003). http://asd-www.larc.nasa.gov/TOR/TOR_Data_and_Images.
html. (b) Mean tropospheric column density of NO, (1015 molecules/cmz) derived from SCIA-
MACHY measurements 2003—2007. Data provided by Steffen Beirle. (¢) Mean column density of
CO (10" molecules/cm?) derived from nighttime IASI measurements July 2008. Data provided by
Matthieu Pommier/Cathy Clerbaux.

There are particularly strong enhancements of SO, after volcanic eruptions
(Khokhar et al. 2005; Thomas et al. 2005; Yang et al. 2007), as illustrated in
Fig. 8.14b (note the change in colour scale compared to a). Satellite measurements
can be used to monitor volcanoes remotely (see http://www.gse-promote.org/) and
give information on the extent and location of plumes, this information being
important for air traffic routing.

Analogous highly sporadic enhancements can be observed for strong biomass
burning episodes in a wide range of tracers such as CO, NO,, HCHO, and CHO-
CHO (Thomas et al. 1998; Edwards et al. 2006; Wittrock et al. 2006). For example,
Fig. 8.15 shows the enhancement of CO from the Alaskan forest fires in July 2004
(see also Section 8.2.3).
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Fig. 8.13 (continued) Atlas of tropospheric species observed from space. (d) Mean column
density of HCHO (10'® molecules/cm?) derived from OMI August 2006. Data provided by
Thomas Kurosu. (e) Mean glyoxal (CHOCHO) column density (1015 molecules/cmz) from
SCIAMACHY measurements 2003-2007. Data provided by Mihalis Vrekoussis (Vrekoussis
et al. 2009). (f) Mean column density of SO, (DU) from SCIAMACHY measurements 2007.
The shaded area over South America/South Atlantic masks improper fit results owing to the South
Atlantic Anomaly (SAA). Data provided by Andreas Richter.

The origin, amount and impact of halogen oxides on tropospheric composition is
still highly debated (Platt and Honninger 2003; von Glasow et al. 2004; Monks et al.
2009). The detection of tropospheric BrO (Wagner and Platt 1998; Richter et al.
1998) and IO (Saiz-Lopez et al. 2007a; Schonhardt et al. 2008) from space were
milestones for polar tropospheric chemistry research, proving the existence of
halogen oxides over extended areas in polar spring (Fig. 8.9) and indicating
where and when in-situ measurements should be performed for in-depth analysis
of the basic chemical mechanisms.
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Fig. 8.13 (continued) Atlas of tropospheric species observed from space. (g) Mean tropospheric
mixing ratio (ppm) of CO, derived from SCIAMACHY measurements in May 2003. Data
provided by Michael Buchwitz (Buchwitz et al. 2007b). (h) Mean tropospheric mixing ratio
(ppm) of CH, derived from SCIAMACHY measurements 2004. Data provided by Christian
Frankenberg (Frankenberg et al. 2008). (i) Mean tropospheric column density of H,O (1022 mole-
cules/cm?) derived from GOME measurements 1996-2004. Data provided by Thomas Wagner
(Wagner et al. 20006).

In the cases of some VOCs observable from space, in particular HCHO and
CHOCHO, (Fig. 8.13d, e), the secondary production from photochemical degradation
exceeds direct emissions. Enhanced column measurements thus serve as proxy for the
emissions of precursors and indicators of photochemistry (Millet et al. 2008; Palmer
et al. 2003; 2006). For example, enhanced HCHO columns over south-eastern US
are used as a quantitative proxy for biogenic isoprene emissions (Palmer et al. 2006).
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Fig. 8.13 (continued) Atlas of tropospheric species observed from space. (j) Mean tropospheric
column density of BrO (10'* molecules/cm?) derived from GOME measurements September
1997. Data provided by Nicolas Theys/Michel van Roozendael. (k) Mean tropospheric column
density of 10 (10" molecules/cm?) derived from SCIAMACHY measurements Sep—Nov 2005.
Data provided by Anja Schonhardt (Schonhardt et al. 2008).

The global pattern of tropospheric O3 shown in Fig. 8.13a reflects the availability
of O3 precursors, i.e. NO, and VOCs. Highest columns being found over eastern
Asia and the US East coast. The enhancement over the western Atlantic from Africa
is because of the presence of the compounds (see CO, HCHO, CHOCHO), NO,
from biomass burning and NO, from lightning (Martin et al. 2007).

From the spatial distribution alone as measured from space, on individual days
or temporally averaged, it is possible to learn about sources of different trace gases.
Consequently, satellite measurements have been used to estimate or constrain
emissions in several studies (Arellano et al. 2004 (CO); Bergamaschi et al. 2007
(CHy); Leue et al. 2001; Martin et al. 2003; Jaegle et al. 2005 (NO,)) on a global
scale, as well as in numerous studies focusing on particular regions and/or source
types. For such inversion studies, knowledge of lifetimes and transport is needed,
which is provided by chemical transport or general circulation models, to link
emissions to columns. The link of satellite observations to chemistry models is
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Fig. 8.14 (a) Average SO, column amounts measured by OMI over southern Colombia (Co),
Ecuador (Ec), and Peru (Pe) between Ist September 2004 and 30th June 2005. Triangles mark
Volcanoes, while Peruvian copper smelters are indicated by diamonds (Carn et al. 2007).
(b) Observed OMI SO, column over the volcanic plume emitted from Soufriere Hills Volcano
(Montserrat; 16.72°N, 62.18°W) on 21st May 2006 (Yang et al. 2007).
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Fig. 8.15 MOPITT 700-hPa CO mixing ratio for 15-23 July 2004 (Fishman et al. 2008).

discussed in Chapter 9. However, independent lifetime information can also be
gained from the satellite measurements themselves from spatial patterns downwind
the sources (Beirle et al. 2004a).

8.3.2 Monitoring Transport and Circulation

The availability of temporally consecutive global measurements allows an investi-
gation of transport of various trace gases for individual episodes as well as in
terms of predominant transport patterns. Satellite observations not only reveal the
location and strength of sources, but also the fate of the different trace gases visible
from space. In addition, transport patterns (in particular of trace gases with lifetimes
of weeks to months) serve as tracers for the validation of transport models. In
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particular, CO is a good marker for long range transport (LRT) owing to its lifetime
of a few months (see Section 8.2.3).

Local emissions from industry or biomass burning can contribute appreciably to
levels in remote regions. However, even close to sources, the question arises as to
what fraction is due to these local emissions, and how much is due to long-range/
intercontinental transport. For instance, Liang et al. (2007) reported that the Asian
influence on pollution levels observed in the free troposphere over North America
in summertime contributes about 7%. Heald et al. (2003) and Zhang et al. (2008)
report on Trans-Pacific transport events of CO (Fig. 8.16), suggesting that similar
LRT episodes affect North American levels of O;. Gloudemans et al. (2006) found
evidence for long-range transport of CO from biomass burning in the southern
hemisphere using SCTAMACHY measurements, concluding that South American
biomass burning emissions contribute up to 30-35% of the CO levels over Australian
biomass burning regions.

The transport of SO, plumes from volcanic eruptions can be investigated from a
time series of satellite maps (Prata et al. 2007) (Fig. 8.27). Such volcanic plumes
can travel thousands of km over several days. The heavy eruption of the Kasatochi
volcano in Alaska on 7th August 2008 led to the first detection of volcanic BrO in
satellite spectra. The BrO plume could be tracked over a time period of about 6 days
(Theys et al. 2009) (Fig. 8.17).
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Fig. 8.16 CO columns from AIRS, TES and the GEOS-Chem model during the transpacific Asian
pollution event, 5th-9th May, observed by the INTEX-B aircraft (Zhang et al. 2008).
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Fig. 8.17 GOME-2 measurements of BrO total columns after the eruption of the Kasatochi
volcano and corresponding FLEXPART column simulations (Theys et al. 2009).

In the case of NO,, LRT is unusual owing to the short lifetime of NOy in the
boundary layer, but it occurs occasionally when the boundary layer pollution is
lifted to the upper troposphere, where the NO, lifetime can reach several days
(Wenig et al. 2003). In addition, PAN acts as reservoir for NO, and plays an
important role for the LRT of nitrogen oxides (Singh et al. 1992).

A prominent example of intercontinental transport of an anthropogenic NO
plume within a meteorological “bomb” from the US East coast to Europe within
five days was reported by Stohl et al. (2003) (Fig. 8.18).

A statistical analysis of transport patterns of NOy is given in Eckhardt et al.
(2003) where NO, distributions for high and low NAO (North Atlantic Oscillation)
index are compared. For high NAO, NO, levels over northern Europe are signifi-
cantly higher than for low NAO in winter, owing to the changes in wind patterns.
An increase in NAO as reported by Hurrell (1995) implies an increase in Oj
precursors in the Arctic. Similarly, Creilson et al. (2003) report a positive correla-
tion of NAO indices and tropospheric O3 columns over Europe due to transport of
O3 precursors from North America to Europe.

Thus, analysis of range, frequency and significance of transport events permits
us to verify our knowledge about atmospheric processes, in particular the lifetimes
of different trace gases. Satellite measurements are also a powerful tool to investi-
gate the question of how far regional pollution levels are local or impacted by LRT
(Keating and Zuber 2007).
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Fig. 8.18 Transport event of NO, from North America to Europe in November 2001 (Stohl et al.
2003). Left: TVCDs of NO, (GOME). Right: Total columns of the FLEXPART NO, tracer.

8.3.3 Trends

There is now more nearly 15 years worth of tropospheric column measurements
particularly in the UV/Vis spectral range. Using these data, studies on long-term
temporal changes or trends of a range of different trace gases are becoming possible.

Fig. 8.13b shows that China is the region with the highest observed NO, columns
in the world. There has been a tremendous growth in industrial activity during recent
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years. The pattern was different some years ago when it was dominated by the U.S.
and Europe (Leue et al. 2001). Richter et al. (2005) first studied the trend of NO,
columns and found a strong increase of 50% over 8 years in the Chinese region,
while NO, columns over Europe and parts of the U.S. decreased (Fig. 8.19). Similar
trend studies have been performed by Irie et al. (2005), Konovalov et al. (2008),
Stavrakou et al. (2008), van der A et al. (2008), Hayn et al. (2009) and Kim et al.
(2006) focussed on changes in NO, over U.S. power plants and found significant
reductions owing to the implementation of pollution controls by utility companies
in the eastern U.S.
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Fig. 8.19 Average annual changes in tropospheric NO, as observed by GOME from 1996 to 2002
(Richter et al. 2005 (Reprinted by permission of Macmillan Publishers Ltd)).

The increase of NO, columns over China illustrates the need for the updating of
the relevant emission inventories on annual basis. Models using outdated emission
inventories cannot be expected to simulate atmospheric chemistry realistically.

Similar trend investigations have been performed for CO (Yurganov et al. 2008)
and SO, (Khokhar et al. 2008). Results are not as clear as with NO, emissions over
China; nevertheless, Yurganov et al. (2008) find an increase of global CO of about
2% per year for the second half of the year from MOPITT measurements between
2000 and 2006, while for the first half of the year, no significant change was
detected. Ongoing measurements and an increasing number of CO sensors will
allow more detailed regional studies to be performed in the near future. Khokhar
et al. (2008) report on a decrease of SO, columns of 25% from 1996 to 2002 over
the copper smelter Ilo in Peru, derived from GOME measurements.

For O3, the time-series are available from 1979. However, the determination of
trends of tropospheric Oj is difficult owing to the dominant stratospheric column
that also changes. Nevertheless, Ziemke et al. (2005) report an increase of tropo-
spheric Oz of 2 to 3 DU per decade for mid-latitudes for both hemispheres, while for
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the tropics, no significant change could be found, as also reported by Thompson and
Hudson (1999).

The combustion of fossil fuels has lead to a large increase in atmospheric
CO, levels, which is overlaid by the seasonal variation imprinted by the uptake
and release of CO, by plants. This is impressively documented in the long-time
series of CO, mixing ratios over Mauna Loa, Hawaii (Keeling et al. 1976).
Buchwitz et al. (2007b) present a good match for the Mauna Loa time-series
with SCIAMACHY northern hemispheric mean columns, and show an appreciable
increase in CO, even for the relatively short time-series available from SCTAMACHY
(Fig. 8.20).
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Fig. 8.20 Atmospheric CO, over the northern hemisphere from 2003 to 2005 as retrieved from
SCIAMACHY satellite measurements (Buchwitz et al. 2007b).

As well as trace gases that are directly affected by anthropogenic emissions,
water vapour, a natural greenhouse gas, is subject to changes owing to climate
change. Since water vapour is strongly coupled to temperature, global warming
should enhance water vapour columns, establishing a positive feedback mecha-
nism. From GOME measurements, an increase of total column precipitable water of
about 3% per year is reported by Wagner et al. (2006), in parallel with the increase
in surface temperature, and hence indicates a strong positive climate feedback for
water vapour. Similar results are found by Mieruch et al. (2008).

A continuous time series of satellite measurements will allow us to monitor
future changes of various trace gases, and so to check the efficiency of measures
taken to reduce air pollution. Satellite measurements have the potential to verify
compliance of international climate protocols such as the Kyoto Treaty.
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8.3.4 Periodical Temporal Patterns

As well as longer-term trends, periodical temporal patterns can be analyzed. Annual
cycles are the usual dominant patterns within a time series of atmospheric trace
gases owing to changes in emissions, chemistry and/or viewing conditions of the
same periodicity.

The annual cycle of CO reflects the emissions during tropical biomass burning
seasons (Edwards et al. 2006a; 2006b; Frankenberg et al. 2005b). Similar response
of biomass burning emissions can be found in measurements of NO,, HCHO
or CHOCHO (Jaegle et al. 2005; Stavrakou et al. 2009; Myriokefalitakis et al.
2008). Palmer et al. (2006) investigated seasonal variability of isoprene emissions
over North America using satellite measurements of HCHO. On shorter time scales,
the clear coincidence of the onset of precipitation with enhanced NO, column
densities was used to identify and estimate soil emissions of NO, (Jaegle et al.
2004; Bertram et al. 2005).

Tropospheric BrO in polar regions shows an annual peak in hemispheric spring
(Fig. 8.9), which is an important clue to its origin (Monks 2005). The specific
annual cycle indicates that newly-formed sea ice plays an important role in the
heterogeneous release of bromine leading to the bromine explosion. This could
either be directly or indirectly due to the formation of highly saline frost flowers or
aerosols resulting from frost flowers (Kaleschke et al. 2004).

Van der A et al. (2008) determined maps of the month with highest NO, column
density and, with simple assumptions on yearly cycles of different NO, sources,
derived maps of the dominant NO, source (Fig. 8.21).
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Fig. 8.21 (Left) Month of maximum NO,; (Right) Dominant NOj source identification (van der A
et al. 2008).

Anthropogenic emissions in most industrialized countries follow a weekly cycle
with emission reductions on Sundays. This is reflected in the weekly pattern of NO,
column densities (Fig. 8.22): A clear reduction of NO, columns on Sundays can be
found for the United States, Europe, South Korea and Japan, while columns reach a
minimum on Friday in the Middle East and Saturday in Israel. In China, no weekly
cycle is observed.
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Fig. 8.22 Weekly cycle of NO, column densities for the United States, Europe, the Middle East,
and eastern Asia (SCIAMACHY measurements 2003-2007).

The observation of a weekly cycle helps to discriminate between different NO,
sources that show different reductions, such as traffic and power generation (Beirle
et al. 2003; Kaynak et al. 2009). In addition, analysis of the complete weekly
pattern holds information on the NOy lifetime. For example, Monday levels of
NO, over Germany are significantly lower than Tuesday levels in winter, since
Monday “inherits” comparably clean Sunday air owing to the longer lifetime of
about 1 day (Beirle et al. 2003).

8.3.5 Synergistic Use of Different Measurements

Several years of satellite measurements and a growing number of instruments in
space have resulted in extensive datasets providing information on many atmospheric
trace gases. At the same time, there is considerable additional information on clouds,
aerosols, or ground albedo which is of importance for the quantitative interpretation
of column measurements from space. Furthermore, satellite measurements of other
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quantities such as lightning flashes, fires, night-time light pollution or vegetation
indices, can serve as proxies for various emission sources such as lightning NO,,
biomass burning emissions of CO, VOC and NO,, or anthropogenic versus biogenic
activity.

The possibilities offered by comparisons between the different datasets and their
combined use are manifold, e.g., combining different species from one sensor, the
same species from different sensors, different species from different sensors, or
trace gases with auxiliary data like lightning etc. The potential of synergistic use of
the available information has not yet fully been exploited, but recent studies have
begun to demonstrate the insights that can be gained from the combined use of
various datasets. Here follows a short discussion on some aspects of different
synergistic applications and their potential.

a Improving Retrievals

Additional measurements are required for the retrieval of tropospheric column
densities. The sensitivity of satellite measurements for tropospheric trace gases is
affected by aerosols and clouds as well as the spectral ground albedo. Information
about these parameters can be gained from the spectral measurements themselves
(Chapters 5 and 6), with the important advantage that, for example, cloud properties
directly match the time and location of the column measurements. In addition,
imaging spectrometers like MODIS or MERIS, and space-born LIDARs (CALIPSO),
provide detailed information on clouds and aerosols with high spatial resolution.

Satellite observations designed for stratospheric trace gas observations can be
used to extract tropospheric columns from total column measurements. This is of
particular importance for the retrieval of tropospheric O, since the total O; column
is dominated by the stratosphere. For instance, satellite SBUV measurements have
been used to derive tropospheric O; from TOMS measurements (Fishman and
Balok 1999). For a range of tropospheric gases, for example, NO, or BrO, the
stratospheric column has to be known to retrieve the residual tropospheric column.
SCIAMACHY operates in an alternating limb-nadir mode to allow the direct
retrieval of stratospheric columns for the correction of nadir column measurements
(Sierk et al. 2006; Beirle et al. 2009).

b Identifying Sources

Trace gas columns from satellite measurements can be compared to independent
measurements of different parameters like fire or flash counts, which are proxies for
different trace gas sources. For instance, fire counts from the satellite instruments
ATSR or MODIS, are indicators of biomass burning and have been compared to CO
(Edwards et al. 2006), HCHO and NO, (Spichtinger et al. 2004) and CHOCHO
(Wittrock et al. 2006). Flash counts from the Lightning Imaging Sensor (LIS) have
been compared to NO, columns over Australia to estimate NO, production by
lightning (Beirle et al. 2004c) (Fig. 8.23).
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L - K.l

Fig. 8.23 Monthly mean LIS flash counts (upper row, flashes per day and km?) and GOME
tropospheric NO, column (lower row, 10" molecules/cm?) in Australia for several months in1999
(Beirle et al. 2004c).

Toenges-Schuller et al. (2006) used light pollution at night, as measured from
DMSP, as proxy for anthropogenic emissions; it shows a good spatial correlation
with NO, columns.

¢ Learning About Atmospheric Chemistry

From the UV/vis spectral measurements, several trace gases (e.g. NO,, SO,
HCHO, CHOCHO, CO, O3) can be derived simultaneously, giving information
on different sources, such as anthropogenic versus biomass burning, and allows
insights into their chemistry and lifetimes. For instance, Martin et al. (2003) have
differentiated NOy saturated from NOj sensitive regions from the observed ratio of
HCHO to NO, columns (Fig. 8.24).

Results from different sensors for the same trace gas can be used synergistically.
Currently, four nadir spectrometers in the UV/vis (GOME, SCIAMACHY, OMI
and GOME-2) are in operation simultaneously. Comparisons between different
instruments can provide consistency checks. In addition, the different overpass
times provide information on the diurnal variations of trace gas columns. Boersma
et al. (2008a) compared monthly mean NO, columns from SCIAMACHY (over-
pass time: 10:00) and OMI (13:30) (Fig. 8.25). OMI columns are lower than
SCIAMACHY columns over fossil fuel combustion regions, mainly because of
higher OH concentrations, and thus shorter lifetimes, in the early afternoon. Over
biomass burning regions, OMI columns are higher owing to the diurnal cycle of fire
activity, which is not considered in emission inventories.

d Learning About Profiles

Measuring one trace gas at different wavelengths provides additional profile infor-
mation owing to different altitude sensitivities. For instance, MOPITT (4.7 um) is
more sensitive to CO in the free troposphere while CO columns in the NIR spectra
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Fig. 8.24 Monthly mean tropospheric HCHO/NO, column ratio from GOME (Martin et al.
2004a).

from SCIAMACHY (2.3 um) reach towards the ground; the difference allows the
boundary layer concentration of CO to be estimated (Fig. 8.26) (Turquety et al.

2008).
e Multi-Platform Observations

Similar comparisons of trace gas columns from different sensors have been per-
formed and are in progress for many trace gases. For CO, there are several new
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Fig. 8.25 Absolute difference between monthly mean SCIAMACHY and OMI tropospheric
columns for August 2006 (Boersma et al. 2008a).
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Fig. 8.26 Boundary layer residual of CO derived from the difference of SCIAMACHY and
MOPITT columns of CO (Turquety et al. 2008).

instruments, so that now five (N)IR instruments (MOPITT, SCIAMACHY, AIRS,
TES, TASI) are available for synergistic use. For instance, Prata et al. (2007) used
measurements from AIRS (IR), SEVIRI (IR), MLS (MW, Limb), and OMI (UV/
vis), to track the early evolution and long range transport of a volcanic cloud
from Soufriere Hills volcano, Montserrat (Fig. 8.27) in order to estimate the total
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AIRS Cumulative SO, 21-27 May, 2006. Soufriere Hills, Montserrat.
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Fig. 8.27 AIRS SO, total column retrievals for 21st-26th May 2006 from the Soufriere Hills
volcano, Montserrat (Prata et al. 2007).

SO, emissions. Such comparisons of the results from several satellite measure-
ments, having different measurement times, wavelengths (and thus averaging
kernels) etc. will further improve our understanding of tropospheric composition
and chemistry.

8.3.6 Operational Use

Most of the tropospheric composition data collected from satellites so far has been
from “research” instruments on individual science missions. However, both
TOMS-OMI series and GOME-SCIMACHY missions have yielded long term
measurements. As has been shown previously in Section 8.3.2 there is much to
gain from long-time series of satellite data in mapping change in the earth-system.

However time series and monitoring, requiring consistent long-term measure-
ments delivered in a timely fashion require operational measurements: measure-
ments made with satellite instruments which are intended to deliver the data for the
foreseeable future. An example is provided by the satellites used by the meteoro-
logical services.

IGACO is a strategy for bringing together ground-based, aircraft and satellite
observations of 13 chemical species in the atmosphere. IGACO will be implemen-
ted as a strategic element of the GAW programme of the WMO.

Using the current generation of satellites, pilot operational services are
being developed, e.g. PROMOTE/GMES (http://www.gse-promote.org/), or TEMIS
(www.temis.nl) that provide information on air quality, UV and climate gases.
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Long-term operational tropospheric chemical measurements from satellites have
been initiated in concert with the meteorological community of MetOp (Klaes et al.
2007), providing measurements in the UV/vis (GOME-2) and the IR (IASI). In a
parallel area, data fusion of various satellite sensors has been used to generate an
operational aerosol prediction (Al-Saadi et al. 2005).

Despite the uncertainties of tropospheric trace gas columns derived from satel-
lite measurements, particularly due to clouds and trace gas profiles, the improving
spatial resolution and the growing number of different sensors available will allow
us to plan different applications. For instance, future satellite instruments with
footprints of some km” would allow the monitoring of air quality, in particular
NOy, on urban scale. A number of groups have indentified the utility of geostationary
observations, not only for air quality applications where high spatial and temporal
measurements are required, but also for operational assimilation into predictive
models (Bovensmann et al. 2002, 2004; Burrows et al. 2004; Fishman et al. 2008;
Munzenmayer et al. 2008). In particular, the existing satellite instruments on
sun-synchronous orbits are not capable of resolving the diurnal chemistry cycle.

There has been some discussion on the application and use of so-called chemical
weather (Lawrence et al. 2005), a direct analogy to meteorological weather, and the
role satellites would play in delivery of operational data.

In future, satellite measurements could also play an important role in monitoring
emission policies by measuring levels and trends of pollutants (NO,, CO, SO,), Os,
and greenhouse gases (CO, and CHy).

8.4 Summary and Outlook

Satellite observations of tropospheric trace gases are a new and powerful tool to
study tropospheric composition. The spatial and temporal information obtained
globally provides unique information on sources, transport, and sinks for a range
of gas-phase and particulate species. Tropospheric composition satellite data is
beginning to make the transition from observation to quantification.

Looking to the future, a new view will be afforded with the long term continuous
measurements from new satellites. There are now a number of programs to make
the supply of high quality tropospheric composition data operational. In many
senses, the satellites that have given so much insight into the troposphere were
designed for research purposes and we await data from a generation of satellites
designed for that purpose. A significant challenge still exists to merge the satellite
data to the in situ observing systems in a meaningful and consistent way.

There is a clear need for improved spatial resolution, spatial cover and increased
temporal coverage. Geostationary observations have a lot to offer (Fishman et al.
2008; Munzenmayer et al. 2008) for greater regional insights into tropospheric
chemistry from space. There are scientific challenges across the globe, such as the
continuing challenge of urbanisation and Megacities (Molina and Molina 2004),
and a trans-national observing system for the tropics, that will require a new generation
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of satellite measurements. Synergistic use of multiple instruments has just started
and there is much data still to be analysed; there are many further applications
ahead. Tropospheric satellite observations have to be ready to meet the challenges
of climate change as we look to the future and this will put great demands on
facilities, data, analysis and understanding.
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