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Chapter 9

Synergistic Use of Retrieved Trace Constituent

Distributions and Numerical Modelling

Maria Kanakidou, Martin Dameris, Hendrik Elbern, Matthias Beekmann,

Igor B. Konovalov, Lars Nieradzik, Achim Strunk and Maarten C. Krol

9.1 Introduction

Remote sensing of tropospheric constituents from satellite observations of solar

irradiance has made significant advances the recent years, opening new horizons in

environmental studies and extending observational coverage from individual scarce

observations to the global view of short- and long-lived tropospheric constituents.

Retrievals of tropospheric trace constituent distributions from satellite observations

now provide a concise and global view of the state and of the evolution of the

atmosphere. They are valuable for understanding atmospheric responses to natural

and human driven emissions, meteorology and climate changes.

For two decades now, the number and type of observations, coupled with improve-

ments in the retrieval algorithms for tropospheric trace constituents and the validation

of the retrieved products (trace gases atmospheric columns and profiles, aerosol

parameters, fire counts, etc.) has resulted in an increasing confidence in the observa-

tions of the Earth’s surface and troposphere from space. Thus monitoring air pollution

M. Kanakidou

Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete,

Heraklion, Greece

M. Dameris

Deutsches Zentrum f€ur Luft- und Raumfahrt, Institut f€ur Physik der Atmosph€are, Oberpfaffenho-
fen, Germany

H. Elbern, L. Nieradzik and A. Strunk

Rhenish Institute for Environmental Research at the University of Cologne, K€oln, Germany

M. Beekmann
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from space is now close to reality and this information can be used for the definition

of environmental strategy and control.

Retrieval products of both trace gas and aerosol distributions seen from

satellites, are starting to be widely used by the atmospheric modelling community

for evaluating models, process studies, improving emissions estimates and estimat-

ing environmental and climate impacts occurring in the Earth system due to

emissions and chemistry of greenhouse gases and aerosols.

Uncertainties and approximations are associated with both the retrieved data

products and the environmental model simulations. These have to be taken care-

fully into account when using satellite observations jointly with data derived from

numerical modelling studies for detecting and quantifying atmospheric changes. In

particular, although satellites provide a global view of the atmosphere, this is

mostly a composite of several overpasses at specific times of the day and with a

specific daily frequency. For instance, SCIAMACHY passes over an area at around

10:30 local time and follows almost the same orbit every 6 days at the equator,

whereas GOME-2 monitors an area around 9:30 every 1.5 days and OMI performs

more frequent observations with an overpass once a day at 13:30 local time.

Similarly the atmospheric models use a variety of horizontal and vertical resolu-

tions ranging for global models from about 5� � 5� to a few tenths of a degree in

latitude by longitude and from nine to several tens of vertical levels that also vary in

thickness as a function of altitude and location (Stevenson et al. 2006). The model

spatial resolutions mostly do not coincide with the spatial resolutions of the satellite

sensor observations (Fig. 9.1). This has to be taken into account when comparing

satellite data with model results, particularly for short lived species that have a high

spatial and diurnal variability such as NO2, HCHO, and CHOCHO (Vrekoussis

et al. 2004; Velasco et al. 2007).

Fig. 9.1 Tropospheric slant column densities of glyoxal, CHOCHO, retrieved from SCIAMACHY

sensor observations over south-eastern Europe on 20th August 2007. To demonstrate the non

collocation of satellite pixels and model grid boxes, the satellite pixels, which are of variable size,

are shown in colour and a model grid box of 2� � 3� resolution is marked in black (personal

communication from M. Vrekoussis, IUP, University of Bremen).
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Using observations of the back scattered solar radiation at the top of the

atmosphere and measurements of the extra terrestrial solar irradiance enables the

slant column (SC) of a trace gas in a particular wavelength region to be determined.

This SC depends on the length of the path of the photons through the atmosphere,

the air mass factor (AMF) and the absorptions of the trace gas in a given altitude. So

the AMF also depends on the amount of multiple scattering, the fraction of photons

reflected at the surface in the direction of the satellite, and therefore the vertical

profile of the trace gas (see Chapter 1). The AMF thus provides a priori information

on the combined effect of all factors that affect the transfer of radiation in the

atmosphere and allows conversion of the slant column of atmospheric constituents

seen by the satellite sensor to vertical columns or profiles. This information is

produced from atmospheric observations and model simulations that take into

account the presence of clouds and aerosols, surface albedo, the shape of the

constituent’s vertical profile and temperature in the atmosphere (see in www.iup.

uni-bremen.de/E-Learning/section on retrieval procedures and column measure-

ments, and Chapter 1).

One possibility would be to determine in the model the SC and compare model SC

with retrieved SC. This would be consistent. However vertical column amounts are

easier to comprehend and thus are more likely to be used. It is evident that the quality

of the retrievals of the vertical total or tropospheric columns of trace gases and the

outcomes of the synergistic use of models with satellite observations strongly depend

on the assumptions and a priori knowledge being used to determine the AMF.

A similar issue arises when using measurements of the emerging thermal

infrared radiation and optimal estimation retrieval techniques. For the retrievals

of atmospheric profiles, such as those of CO from the MOPITT instrument,

information on the sensitivity of the retrieval to the real profile of the studied

atmospheric constituent is required, as well as the a priori constituent’s profile.

This is described by averaging kernel matrixes (Deeter et al. 2003), unique for each

retrieval (www.eos.ucar.edu/mopitt/data) that have to be taken into consideration

when satellite retrievals are synergistically applied with models.

As an example, Fig. 9.2 shows MOPITT observations of CO columns and

compares them with the GEOS-Chem model results sampled along the satellite

sensor orbit track and using the MOPITT averaging kernels (Hudman et al. 2004).

Asian anthropogenic CO is seen in both distributions. Note that UV/vis/NIR

retrievals have no or very limited vertical resolution and so only columns can be

retrieved and compared to models.

Provided the sensitivity, for example expressed through the averaging kernels

of the retrieved data products, when using DOAS or optimal estimation or

other retrieval approaches are appropriately taken into account, satellite observa-

tions are and have been synergistically used with modelling for several key

objectives:

l To improve our understanding of atmospheric chemistry and its evolution with

time under anthropogenic and natural stresses and evaluate models, both on

global and smaller scales;
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l To identify the origin and evaluate the environmental consequences of the

atmospheric composition changes as seen from space;
l To initiate chemical transport models by using satellite derived distributions

of atmospheric constituents as an input for chemistry transport modelling (for

instance fire counts observations as a proxy for biomass burning emission

distribution; vegetation and chlorophyll-a distributions used to parameterise

biogenic emission from the terrestrial and the marine ecosystems, etc.) and

thereby to account for processes that are not explicitly resolved in the models;
l To assimilate retrieved data products from satellites to improve model prognos-

tic results;
l To evaluate and improve emission estimates and atmospheric trends (forward

and inverse modelling).

This research field, coupling models and satellite data products, is evolving

rapidly. In the following sections a flavour of the results obtained from the above

scientific applications and their principles rather than an exhaustive list of studies

performed is provided. Selected investigations of tropospheric model evaluation,

species origin and sources identification are outlined in Section 9.2. Principles,

examples and needs for inverse modelling are presented in Section 9.3 and objectives,

methods and examples for retrieved data assimilation are discussed in Section 9.4.

Overall conclusions on the state of the art in the field and challenges for future

research on synergistic use of satellite retrievals and atmospheric models are given in

Section 9.5.

9.2 Use of Satellite Data for Process Understanding

and Model Evaluation

Consistent global information of the chemical composition and the dynamics of the

Earth’s atmosphere are provided by space-borne instrument measurements. Satellite

data are therefore a major corner stone for better understanding of individual

Fig. 9.2 Transpacific Asian pollution event shown by MOPITT observations of CO columns on

4th May 2002 at 00:00 UTC (left). The right panel shows the corresponding GEOS-Chem model

results sampled along the MOPITT orbit tracks and with MOPITT averaging kernels applied. The

black circles show the plume location (figure adopted from Hudman et al. (2004)).
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atmospheric processes and feedback mechanisms. In addition, the synergistic use of

observations and respective data derived from studies with numerical atmospheric

models helps to improve the knowledge of processes driving atmospheric varia-

bility and changes on different time scales. Discrepancies between observations and

model results can help to identify gaps in our understanding of dynamical, physical

and chemical processes in the atmosphere. A detailed evaluation of atmospheric

models is necessary to determine their ability to reproduce adequately atmospheric

variability and changes. The exact knowledge of strengths and weaknesses of such

models is required to enable solid assessments of the future evolutions of atmo-

spheric chemical composition and climate.

9.2.1 Understanding Atmospheric Chemistry

In the recent decade work has been intensified to develop numerical model systems to

describe the whole Earth system taking into account interactions, variations

and feedbacks of the various compartments of the Earth system, including the

atmosphere. Previously, atmospheric models required a number of input parameters,

relevant to processes that are not explicitly resolved by these models and which are

used as boundary conditions. As a result of the increasing availability of relevant

satellite observations, processes in atmospheric models can now be driven by taking

the initial data from satellite observed parameters. For example, in the absence of

coupled dynamic vegetation/emissions/fire models, satellite retrievals of terrestrial

vegetation and fire counts are used to parameterise biogenic VOC emissions or

deposition (Guenther et al. 2006), and biomass burning emissions (Mota et al.

2006; Giglio et al. 2006). Synergistic use of products from several satellites allows

the construction of long data series. For instance, van der Werf et al. (2006) provided

computations of global biomass burning emissions that are widely used by the

scientific community. They have used measurements from MODIS in conjunction

with ATSR and VIRS satellite data covering a 7-year period. Chlorophyll-a distribu-

tions seen from space are also introduced as input into the models to parameterise

emissions to the atmosphere from themarine ecosystems (O’Dowd et al. 2008; Arnold

et al. 2009; Myriokefalitakis et al. 2010). Satellite retrievals of trace constituents such

as total O3 column, HNO3 or CO levels in the upper troposphere/lower stratosphere

and aerosol optical thickness (Lelieveld and Dentener 2000; Barret et al. 2008; Ito and

Penner, 2005) have also been used in models when the driving processes, such as

stratospheric chemistry or aerosol dynamics, are not explicitly resolved.

In addition to this one way flow of information from satellite retrievals to

models, scientific advances can be achieved through comparisons of model results

from targeted simulations with satellite retrievals of trace constituents. Such inves-

tigations enable the understanding of atmospheric processes, source identification

and quantification, detection and evaluation of the long range transport of pollutants

and its impacts as well as model evaluation. Examples of such investigations are

discussed in the following sections.
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a Formaldehyde, HCHO: A Proxy for VOC Emissions

Formaldehyde, HCHO, is a high-yield oxidation product of numerous VOCs in the

atmosphere, including isoprene that is emitted in large amounts from terrestrial

vegetation. Due to the short lifetime of HCHO (globally about 4 h) the measured

HCHO tropospheric columns are expected to be correlated with the local VOC

emissions weighted by the HCHO yield. The signal is smeared out and displaced in

the atmosphere due to horizontal transport (Palmer et al., 2003) and diffusion.

However, when focusing on areas of the size of a satellite pixel or even larger as

those of a global Chemistry-Transport Model (CTM) i.e. with a horizontal resolu-

tion of several hundreds of km2, this displacement should be negligible. Palmer

et al. (2003) have developed a methodology based on the synergistic use of the

global CTM GEOS-Chem and satellite retrievals of HCHO columns to constrain

isoprene emissions from the terrestrial biosphere, taking into account the lifetimes

of HCHO and VOC. They assumed that HCHO column variability was mainly

linked to isoprene emissions. Model results have been sampled along the ensemble

of GOME orbit tracks and used to derive linear relationships between HCHO

columns and isoprene emissions over North America in the model. To minimise

biases and maximise consistency between retrievals and model results, HCHO

columns have been retrieved from GOME based on AMF derived from the

model. Clouds, the primary error source in AMF calculations (Millet et al.,

2006), have been filtered out using the cloud fraction data from the same sensor.

Using GEOS-Chem, Palmer et al. (2003) calculated a mean HCHO molar yield of

1.2 to 1.96 that is consistent with laboratory experiments and with aircraft HCHO

and isoprene profile observations (1.6 � 0.5; Millet et al. (2006)). This ratio allows

one to estimate the isoprene emissions from the HCHO columns retrieved from

GOME. The retrieval errors, combined with uncertainties in the HCHO yield from

isoprene oxidation, have been estimated to result in a 40% (1s) error in inferring

isoprene emissions from HCHO satellite observations (Millet et al., 2006).

Guenther et al. (2006) pointed out the potential importance of biomass burning

and anthropogenic emission contributions to HCHO signal that introduces errors to

the emission estimates. However, Palmer et al. (2003; 2006) have also shown that

VOCs other than isoprene generally either have excessive smearing out or insuffi-

cient emission relative to the HCHO detection limit, so that HCHO column

observations from space are highly specific to isoprene. Millet et al. (2008) used

a similar approach to derive isoprene emissions using the GEOS-Chem model and

space observations of HCHO columns by the OMI sensor, with 13 � 24 km2 nadir

footprint and daily global coverage. They also concluded that the spatial distribu-

tion of HCHO columns from OMI follows that of isoprene emission except in few

urban locations, like Houston, where anthropogenic hydrocarbon emissions are

detectable from space. Fu et al. (2007) performed a similar analysis of GOME

retrievals focusing on east and south Asia and found an underestimate of biogenic

VOC emissions over China in the current estimates.

Marbach et al. (2009) reported the first detection of signal from ship emissions in

the GOME derived tropospheric HCHO columns over the Indian Ocean (Fig. 9.3),
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where conditions often favour plume detection since ships follow a single narrow

track in the same east-west direction as the GOME pixel scanning. From the 7-year

composite of cloud free observations, they evaluated a mean HCHO column

enhancement over the shipping route of about 2 � 1015 molecules/cm2. Although

the pattern of this enhancement is reproduced by their Climate-Chemistry model

EMAC, the HCHO columns are underestimated by a factor of two, when satellite

data and model results are similarly sampled and spatially averaged. The discrep-

ancy is tentatively attributed to an underestimate in the emission inventories and

their atmospheric dilution as well as to the rather coarse resolution of the model.

This is limiting the proper simulation of the fast high NOx ship plume chemistry

that enhances oxidation capacity in the marine environment.

b Glyoxal, CHOCHO: Source Apportionment

Glyoxal, CHOCHO, has recently been observed from space (Wittrock et al. 2006).

CHOCHO is known to be mostly a product of biogenic VOC oxidation and has

been suggested as indicator of secondary aerosol formation in the troposphere

(Volkamer et al. 2005). However, a number of anthropogenic hydrocarbons, such

as acetylene and aromatics, have been positively identified as CHOCHO precur-

sors. Myriokefalitakis et al. (2008) investigated the contribution of pollution to the

CHOCHO levels using the global 3-dimensional (3-D) CTM TM4-ECPL in con-

junction with the respective “Vertical Column Amounts or Densities” of CHOCHO

retrieved from the SCIAMACHY sensor observations in 2005.

A series of simulations has been performed accounting for various secondary

sources as well as a potential primary source of CHOCHO from biomass burning.

The simulations have been evaluated by comparison with the retrieved columns of

CHOCHO both on an annual (Fig. 9.4) and on seasonal basis. The observations

Fig. 9.3 HCHO distribution over the Indian Ocean (land masses are masked out). Figures have

been adapted from Marbach et al. (2009). (a) GOME SCDs during winter (January to March)

1996–2002 with cloud fractions below 20% are averaged. The ship track is visible from Sri Lanka

up to about half the distance to Sumatra. For illustration, size and orientation of a single GOME

pixel is displayed above panel a. (b) EMAC model results of the mean HCHO VCDs for winter

(January to March) 1997–2002, integrated up to 50 hPa (using EMAC local time between

10:00–11:00 a.m.).
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have been gridded to 2� � 3� in order to fit the model’s grids and both the retrieved

and the calculated columns have been used. When accounting only for the second-

ary sources of CHOCHO in the model, the model underestimates CHOCHO

columns observed by satellites, and the model fails to simulate the high CHOCHO

columns retrieved over tropical oceans. This is tentatively attributed to outflow

from the continents and local primary oceanic biogenic or secondary sources of

HCHO and CHOCHO that are not taken into account in the model or, alternatively,

to an overestimate of CHOCHO columns in the retrievals. Elucidation of this

discrepancy between satellite observations and model results requires further

targeted experiments as well as forward and inverse modelling investigations.

Using primary emissions of about 7 Tg yr�1 of CHOCHO from biomass burning

and anthropogenic combustion sources in the model, leads to an overestimate of

CHOCHO columns by the model over areas of intensive emissions (Fig. 9.4). For a

global mean lifetime for CHOCHO of about 3 h, their model evaluates the global

annual mean CHOCHO burden in the model domain at 0.02 Tg equal to the global

burden seen by SCIAMACHY over land for the year 2005 (Myriokefalitakis et al.,

2008). These results point to the need to understand the presence of CHOCHO over

Fig. 9.4 Global annual mean column distribution of glyoxal (CHOCHO) (2� � 3� grid) for the

year 2005 (in molecules/cm2). (a) Simulated by TM4-ECPL, taking into account all known

photochemical CHOCHO sources; (b) Retrieved from the measurements made by the satellite

based sensor SCIAMACHY; (c) Comparison of annual mean CHOCHO columns from the TM4-

ECPL simulations (black circles: S3 accounts only for the secondary sources of CHOCHO; red
squares: S4 accounts for all secondary sources and for a potential primary source of CHOCHO

from biomass burning) with the SCIAMACHY data products (in units of molecules/cm2). Binned

data over continental hot spot areas (figure adapted fromMyriokefalitakis et al. (2008) where more

details can be found).
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the tropical oceans. Similar conclusions are drawn by Fu et al. (2008) using the

GEOS-Chem global CTM. In contrast to HCHO, the secondary anthropogenic

contribution from fossil fuel and industrial VOCs emission oxidation to the

CHOCHO columns is found to reach 20–70% in the industrialised areas of

the northern hemisphere, suggesting that concurrent observations of HCHO and

CHOCHO observations over specific locations could provide proxies for VOC

emissions (Myriokefalitakis et al., 2008).

Currently there is much interest in the CHOCHO and IO signals over the oceans.

There are indications that in the Pacific the regions of elevated CHOCHO, IO, and

also possibly HCHO are over areas which contain phytoplankton and in particular

diatoms (personal communication, J. Burrows).

c Determining Dominant Chemical Pathways: Air Pollution Impact

Correlations between atmospheric trace constituents provide important information

about the dominant atmospheric processes, and this novel capability in satellite

remote sensing has important implications not only for investigations of air pollu-

tion, but also for air pollution control strategy. For instance, satellite derived HCHO

and NO2 columns can be used to investigate tropospheric O3 photochemistry.

Martin et al. (2004) applied the GEOS-Chem model to evaluate the potential of

the ratio of HCHO columns to tropospheric NO2 columns as an indicator of surface

ozone – NOx (NOx ¼ NO þ NO2) – VOC sensitivity over polluted areas. Relying

on these model results, satellite data analysis of the HCHO/NO2 column ratios have

shown the consistency of GOME observations over polluted areas with current

understanding of surface O3 chemistry based on in situ observations. The satellite-

derived ratios indicate that surface O3 production is NOx-limited throughout most

continental regions of the northern hemisphere during summer. Exceptions include

major urban and industrial centres such as Los Angeles and industrial areas of

Germany that tend to be NOx-saturated (and thus VOC limited). The NO2 derived

from GOME also yields a geographical transition to NOx-sensitive regime down-

wind of these centres and a seasonal transition in the autumn when surface O3

becomes less sensitive to NOx and more sensitive to VOCs.

The impact of pollution on the photochemical enhancement of O3 can be also

derived from HCHO and NO2 columns observed from space used in conjunction

with chemical box and Langrangian (trajectory) models. For instance, Ladst€atter-
Weißenmayer et al. (2007) using chemical box calculations associated with the

GOME-observed NO2 and HCHO tropospheric columns, found a potential of daily

photochemical enhancement in the tropospheric O3 columns of about 0.8–1 Dobson

Units (DU, equivalent to 2.7 � 1016 molecules/cm2) and a daily potential of

regional photochemical build-up within upwind polluted air masses of about 2–8

DU over Crete in the eastern Mediterranean during spring. At most 10–20 DU of

tropospheric O3 have been attributed to stratosphere-troposphere exchange (STE)

whereas the total observed variability in tropospheric O3 derived from both space

and ground based observations was about 25 DU.
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CO and aerosol satellite observations also provide information on tropospheric

air quality (Chapter 6). Both, CO columns and the aerosol optical depth (AOD)

show oxidant-driven seasonal variation since oxidants act both as a source and a

sink for CO and a production pathway for secondary aerosols. On global scales, fine

mode AOD is driven by sulfate production although carbonaceous particles can be

also of importance over several locations (Zhang et al. 2007), particularly during

biomass burning events. Edwards et al. (2004) analysed global four year records of

concurrent CO and fine mode AOD retrievals from the MOPITT and MODIS

observations, both on board the Terra satellite. They concluded that the observed

CO and AOD seasonal cycles were several months out of phase, with perturbations

occurring during sporadic biomass burning emissions when carbonaceous particles

dominate AOD. During such events the retrieved CO columns and AOD are well

correlated. Anomalous high pollution observed from space in the northern hemi-

sphere in winter-spring of 2002–2003, has been analysed based on the fire counts

from MODIS and on global model simulations with MOZART-2. Artificially

releasing pulses of CO over the fire locations in the model and during four other

months of the year enabled the evaluation of the persistence of CO in the atmo-

sphere. Edwards et al. (2004) calculated that the build-up of CO in the model for a

pulse in October was twice as large as for a pulse in July. This reflects the e-folding

time of CO that was calculated to vary over the studied area from about 1.5 months

in July to about 3.6 months in October. Thus, the timing of the burning (in late

summer-early fall) was favourable for a build-up of CO to anomalously high values

in the northern hemisphere in winter compared to other years.

Lelieveld et al. (2009) synergistically used in situ aircraft observations of O3

together with SCIAMACHY and TES satellite sensor observations of NO2 and O3,

to perform model simulations with the EMACmodel to study the origin of observed

high O3 levels over the Persian Gulf. They concluded that the Persian Gulf region is

a hot spot of photochemical smog where air quality standards are violated through-

out the year. EMAC simulations allow the identification of long distance transport

of air pollution from Europe and the Middle East, natural emissions and strato-

spheric O3 to the relatively high background O3 mixing ratios.

d Understanding Differences Between Retrievals and Model Results

Comparison of model results with retrievals of atmospheric constituents from

satellite observations is not restricted to the analysis of observations but can also

point out deficiencies in the retrieval algorithms and thus initiate their improve-

ments, specifically in the assumptions made for the determination of AMF or the

averaging kernels.

For example Martin et al. (2002) have compared the distribution of tropical

tropospheric O3 columns retrieved from TOMS with the GEOS-Chem model

results together with additional information from in situ observations. They found

major discrepancies between model results and TOMS retrievals over northern

Africa and southern Asia where the TOMS retrieved O3 columns did not capture
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the seasonal enhancements from biomass burning found in the model and in aircraft

observations. Martin et al. (2004) attributed this discrepancy to the poor sensitivity

of TOMS to Rayleigh scattering that is important for retrieving low troposphere O3

enhancements by biomass burning. Thus they developed an efficiency correction to

the TOMS retrieval algorithm that accounts for the variability of O3 in the lower

troposphere. This correction increased the retrieved O3 columns over biomass

burning regions by 3–5 DU and decreased them by 2–5 DU over oceanic regions,

improving the agreement with in situ observations. The correction explained about

5 DU of the “tropical Atlantic paradox”, i.e. the enhanced tropical tropospheric

column of O3 over the southern tropical Atlantic retrieved during the northern

African biomass burning season in December to February. The remainder of the

paradox was reproduced by the model; it was attributed to the combination of upper

tropospheric O3 production from lightning NOx, persistent subsidence over the

southern tropical Atlantic and cross-equatorial transport of upper tropospheric O3

from northern mid-latitudes in the African “westerly duct”.

Another recent example is the study by Bergamaschi and Bousquet (2008), who

identified a bias in the dry column of CH4, retrieved by Frankenberg et al. (2008a)

from SCIAMACHY data, based on simultaneous assimilation of surface observa-

tions and satellite data. A large latitudinal varying bias-correction of the satellite

data was required to make these data compatible with surface observations. The

bias is, in fact, absent in the most recent CH4 retrieval algorithm and the change

has been attributed to the previously poor knowledge of spectroscopic absorption

lines used in the former retrieval algorithm (Frankenberg et al. 2008a), leading

to improved CH4 emission estimates (Frankenberg et al. 2008b). However, it is

worth noting that other retrievals of the dry column do not show the same bias

(Schneising et al. 2008). Overall the evolution of the accuracy of the retrieval

algorithms through improved instrument calibration and validation exercises

using measurements and models enables the maximum information content to

be retrieved. This process is essential, both for testing models and improving

retrieval approaches and algorithms.

9.2.2 Model Evaluations – Comparison with Observation

Recently several tropospheric CTM comparison exercises relied on satellite retrie-

vals to supplement the traditional ground-based and aircraft observational data

(Velders et al. 2001; van Noije et al. 2006; Shindell et al. 2006; Dentener et al.

2006a; Textor et al. 2006; Kinne et al. 2006). The year 2000 has been used as base

year for several global modelling studies. This year benefits from documented

emission inventories (Dentener et al. 2006a; 2006b) for both trace gases and

aerosols in the framework of the AEROCOM exercise (Aerosol Comparisons

between Observations and Models) that is focussed on aerosols (Textor et al.

2006; Kinne et al. 2006; Schulz et al. 2006). These inventories have been also

used for the ACCENT intercomparison exercise that focused on tropospheric O3,
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NO2 and CO budgets (van Noije et al. 2006; Dentener et al. 2006b; Stevenson et al.

2006; Shindell et al. 2006). The proper comparison of model results with satellite

retrievals allows the evaluation both of the emissions used in the model as well

as of the parameterisations of their fate in the atmosphere that reflects our under-

standing of atmospheric processing. In the following we will illustrate model

evaluation procedures by comparing with satellite measurements of a series of

relevant species.

a NO2

NO2 controls tropospheric O3 production. Its levels in the troposphere show trends

that are driven by human activities and these have been observed from space

(Richter et al. 2005). The importance of NO2 for tropospheric O3 and the consis-

tency of the retrieved tropospheric distributions of NO2 stimulated their use

for model evaluation. Moreover, these satellite observations allow NO2 global

pollution to be evaluated.

Historically the GOME sensor aboard the ERS-2 satellite provided a unique

opportunity to compare globally, model calculated NO2 columns, including, for the

troposphere, those from retrievals of remote sensing observations (Lauer et al.

2002). In order to overcome the shortcomings in comparing model results with

satellite retrievals outlined in the introduction, van Noije et al. (2006) used 17

different global CTMs that computed daily tropospheric NO2 column densities for

the year 2000. For each model, the computed NO2 columns were sampled at the

satellite overpass time collocated with the measurements to account for sampling

biases due to incomplete spatio-temporal coverage by the instrument. The ensemble

of the 17 model results has been compared with the mean of the NO2 columns

retrieved from GOME using three different retrieval algorithms (Fig. 9.5).

Fig. 9.5 Ensemble average annual mean tropospheric NO2 column density for three different

GOME retrievals (left panel) and the full model ensemble (A þ B; right panel). These quantities
have been calculated after smoothing the data to a horizontal resolution of 5� � 5� (figure from

van Noije et al. (2006)).
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Three major continental regions of high NO2 tropospheric column densities are

indicated in the mean columns derived both from the 17 models and from the three

GOME retrievals: North America, western Europe, and China (Fig. 9.5). These

regions are subject to high pollution emissions. The averaged model maxima of

6–8 � 1015 molecules/cm2 are smaller than the GOME observed values, which

exceed 10 � 1015 molecules/cm2. These discrepancies between models and retrie-

vals could neither be explained by a priori profile assumptions made in the

retrievals, nor by diurnal variations in anthropogenic emissions (van Noije et al.

2006). They have been attributed (Dentener et al. 2006b) to the assumed NOx

emissions that may be unrealistically low in these regions, in particular over the

rapidly developing parts of eastern China and South Africa. Similar conclusions for

the emissions over Asia were drawn by an earlier and less extensive model

intercomparison with GOME observations (Velders et al. 2001). In regions domi-

nated by biomass burning, such as in Africa and South America, the models

overestimate the retrievals during the dry season. The comparison improves when

using biomass burning emissions specific to the year 2000 instead of a 5-year

average inventory used for the base simulations (van Noije et al. 2006), pointing

to the importance of the inter-annual variability in the emissions. Another signifi-

cant finding is that the differences in the GOME retrievals are in many instances as

large as the spread in model results (10–50% in the annual mean over polluted

regions). This means that in only a few cases, such as China, can robust statements

on the underestimation of NOx emissions be made (Dentener et al. 2006b; van Noije

et al. 2006). The findings imply that top-down estimations of NOx emissions from

satellite retrievals of tropospheric NO2 are strongly dependent on the choice of

model and retrieval.

Recently, Boersma et al. (2009) detected diurnal variations of NO2 over Israel

and Egypt synergistically using two different satellite sensor retrievals and analys-

ing them with CTM results: those from SCIAMACHY that observed the atmo-

sphere at 10:00 and those from OMI that overpasses at 13:45. They demonstrated

that NO2 temporal variability over source regions can be followed from space. They

derived NO2 columns about twice as high in winter as in summer and a strong

weekly cycle with NO2 almost twice as low on Saturdays than on weekdays. The

diurnal difference between SCIAMACHY (10:00) and OMI (13:45) NO2 is seen to

maximise in summer when SCIAMACHY is up to 40% higher than OMI, and

minimise in winter when OMI slightly exceeds SCIAMACHY. The model simula-

tions indicated that a much stronger photochemical loss of NO2 in summer than in

winter is needed to explain these observations.

Another source of NOx that can be seen from space under certain conditions is

that from ships over the remote oceans. Eyring et al. (2007) studied the impact of

ship emissions on atmospheric chemistry and climate, using multi-model simula-

tions of Chemistry-Climate Models (CCMs) that have been evaluated for their

response to ship emissions. Part of this evaluation used satellite data, particularly

the recently observed enhanced tropospheric NO2 columns over the Red Sea

and along the main shipping lane to the southern tip of India, to Indonesia and

northwards towards China and Japan (Beirle et al. 2004; Richter et al. 2004).
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The tropospheric NO2 columns derived from SCIAMACHY nadir measurements

from August 2002 to April 2004 (Richter et al. 2004) have been compared to

ensemble means of the models representing the year 2000. The ensemble mean

was derived from eight models that provided tropospheric NO2 columns at 10:30 a.m.

local time, which is close to the overpass time of the ERS-2 satellite. For this

comparison, individual model results and SCIAMACHY data were interpolated to a

common grid (0.5� � 0.5�). Fig. 9.6 shows that the ensemble of the models repro-

duces the magnitude and the general pattern of the tropospheric NO2 columns over

the remote ocean observed by SCIAMACHY. However, the shipping signal that is

clearly visible in the satellite data with a high horizontal resolution (30 � 60 km2),

does not appear in the model results with a much lower typical resolution of

5� � 5�. In addition, shipping routes in that area are rather close to land and thus

the models grid boxes close to the coast are dominated by NOx emissions from land

sources which are much higher (see also Franke et al. (2009)).

There is clearly a need for model data comparisons with satellite observations

over remote oceans. However, such data are inhibited by the distributed nature of

the ship emissions over the remote oceans leading to dilution of the emissions,

which makes it difficult to distinguish the shipping signal from the effect of long-

range transport of polluted air, such as that from the United States towards Europe.

The emissions between India and Indonesia present a unique emission pattern.

Increasing spatial resolution both of models and of satellite observations might

allow us to resolve ship emissions over other oceanic locations.

b CO

In the frame of the ACCENT AT2 global model intercomparison exercise, Shindell

et al. (2006) compared near-global satellite observations from the MOPITT instru-

ment and local surface measurements with present-day CO simulations by 26 state-

of-the-art atmospheric CTMs and CCMs. For this purpose, they used monthly mean
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Fig. 9.6 NO2 tropospheric columns retrieved from SCIAMACHY observations (left) and ensem-

ble of model simulations (right) interpolated to 0.5� � 0.5�grid (figure from Eyring et al. (2007)).
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daytime values derived from version 3 retrievals from MOPITT gridded at a

resolution of 1� � 1�; the models’ coarser grids were sub-sampled at this same

resolution for comparison. In addition the models were sampled like MOPITT

observations, using space and time varying averaging kernels from the MOPITT

retrievals. This procedure minimises potential biases due to the a priori information

used in the retrievals. Biases may also be induced by the differences between the

models’ full temporal and spatial averaging and the satellite’s limited sampling

time and exclusion of cloudy areas. Such biases are expected to be significant for

short-lived atmospheric constituents like aerosols but quite small for CO given its

relatively long lifetime.

In general, Shindell et al. (2006) pointed out that the models do not adequately

capture CO accumulation during the OH-poor winter. The models underestimate

both magnitude and seasonality of the CO retrievals throughout the entire extra

tropical troposphere in the northern hemisphere, indicating that the biases do not

merely reflect an erroneous vertical structure of modelled CO (Fig. 9.7). However,

they typically perform reasonably well elsewhere. These results suggest that yearly

emissions, probably from fossil fuel burning in eastern Asia and seasonal biomass

burning emissions in south-central Africa are greatly underestimated in current

inventories such as IIASA and EDGAR3.2. Arellano et al. (2006) performed

inverse modelling of CO emissions from various geographical regions and sources

from fossil fuel/bio fuel use in Asia based onMOPITT CO data and found that these

emissions are almost twice as high as recent bottom-up estimates. The underesti-

mate of the Asian CO emissions in the national estimate-based inventory is also

consistent with the under-reporting of NOx emissions (van Noije et al. 2006). In a

more recent study, Arellano and Hess (2006) conducted a sensitivity analysis on the

differences in the model treatment of transport on top-down estimates of CO

sources. They showed that differences between CO model values are due to

atmospheric transport and are of the order of 10–30%, with the highest discrepan-

cies for Indonesia, South America, Europe and Russia.

Fig. 9.7 Differences between multi-model average and MOPITT 2000–2004 average CO (ppbv).

Values are shown for April (left) and October (right) for the 500 hPa pressure level (figure from

Shindell et al. (2006)).
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c Aerosol

Evaluation of aerosol simulations on a global scale is now customarily made

through comparison of simulated annual global aerosol optical thickness (AOT)

values with those obtained from remote sensing. Fig. 9.8 demonstrates how model

simulations for the annual and globally averaged mid-visible AOT (at 550 nm) have

changed from the work by Kinne et al. (2003) to the work by Kinne et al. (2006)

in the frame of the AEROCOM exercise, and how they compare with data from

remote sensing. In the lower panel the number of remote sensing references is

reduced to two selections, though of higher quality; a satellite composite, which

combines individual satellite retrievals (S*) and an estimate based on statistics at

AERONET ground sites (Ae) (Fig. 9.8).

In the earlier work, fewer models were available and the simulated AOTs

exhibited a larger variability between models than in the AEROCOM exercise.

The upper panel of Fig. 9.8 presents adjusted global annual averages from TOMS,

MISR, MODIS, AVHRR and POLDER retrievals. The composite value (S*) is

based on 3� � 3� longitude/latitude monthly averages, where preference is given to

year 2000 data. At 0.11–0.14, simulated AOT values are at the lower end of global

averages suggested by remote sensing from ground (AERONET about 0.135) and

space (satellite composite about 0.15). More detailed comparisons, however, reveal

Fig. 9.8 The upper panel shows diversity in 2002 among models and satellite data (Kinne et al.

2003). The lower panel compares global annual aerosol AOT median value from the 18 models

(med) with the satellite data composite (S* – see text) and the Aeronet sunphotometer network

(Ae) observations. Other symbols correspond to individual models – for more explanations see text

and Kinne et al. (2006).
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that larger differences in regional distribution and significant differences in compo-

sitional mixture remain.

Critical for this exercise has been the production of a composite remote sensing

dataset of AOT for comparison. Since all ground based remote sensing data are

spatially incomplete, adjustments were needed to make global average AOT values

comparable. The adjustments involved the spatially and temporally complete

median field from modelling. Details are given in Kinne et al. (2006) who summa-

rise in a table the contributing time-periods, retrieval references and known biases.

9.3 Inverse Modelling

The examples given in the previous section involved a mostly quanlitative analysis

of the mismatch between models and satellite observations. To exploit satellite data

in a quantitative sense, formal techniques of data assimilation and inverse model-

ling are required. Solving the inverse problem is a common task in many branches

of science, where the values of model variables need to be obtained from observa-

tions (see 9.6, Appendix). Inverse modelling techniques are in widespread use

today in atmospheric science for three major applications: (1) retrieval of atmo-

spheric concentrations from observed radiances (Chapter 4), (2) optimal estimation

of atmospheric model parameters and in particular of emissions, and (3) chemical

data assimilation. The formal framework for these three problems is similar

(Rodgers 2000). Applications presented here will focus on inverse modelling of

emissions using satellite observations and also improvements to atmospheric model

performances.

9.3.1 Inversions for Short-Lived Species

The use of satellite data to improve emission estimates is illustrated using NO2

observations from space, which comprise a large part of inverse modelling applica-

tions. NOx finds favour for several reasons. First, NO2 satellite data products are

abundant and, since the NO2 lifetime is short, the gradients are large and easily

observed from space. Second, the relationship between NO2 columns derived from

satellite measurements and NOx emissions is direct and easy to interpret because

NOx emissions are the major driver of variability on NOx columns. Finally, the

interest for inverse modelling of NOx emissions is fostered by the fact that these

emissions are one of the key factors responsible for air pollution problems.

Many early applications of satellite measurement for estimating NOx emissions

did not explicitly involve any CTM, but used a simple mass balance method which

assumed a constant lifetime of the emitted NOx. For example, Leue et al. (2001)

provided estimates of continental and global NOx emissions, Beirle et al. (2003)

investigated weekly variations of anthropogenic NOx emissions, Beirle et al. (2004)
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estimated NOx emissions from shipping in a specific region of the Indian Ocean,

Bertram et al. (2005) investigated daily variations in soil NOx emissions. Very

recently, Hayn et al. (2009) investigated in detail the spatio-temporal patterns of

the global NO2 distribution retrieved from GOME satellite observations using

a generalised additive model.

Martin et al. (2003) were first to apply the Bayesian inverse modelling approach

to providing inventories for NOx emissions using satellite observations. Specifi-

cally, they performed a probabilistic combination of “top-down” and “bottom-up”

emission estimates and provided a global NOx emission inventory constrained by

satellite measurements, which was claimed to be more accurate than the “bottom-

up” inventory. They used the global GEOS-Chem CTM in order to define a local

linear relationship between NOx emissions. The transport of NOx between different

grid cells was disregarded. Typically they found correction factors (for a posteriori
with respect to a priori emissions) of 10–20% for most of the regions, with

maximum values up to a factor of two. While the use of a global CTM in the inverse

modelling scheme may help to improve global emission inventories, models with

much higher spatial resolution are needed in order to elaborate the constrained

emission inventories for use in air quality studies. Thus, Konovalov et al. (2006a)

used a regional CTMwith the resolution of 0.5� � 0.5� in combination with GOME

and SCIAMACHY measurements to improve NOx emission estimates on a regular

model grid for western Europe (Fig. 9.9). Other novel features of their study were:

Fig. 9.9 (a) A priori estimates of summertime anthropogenic NOx emission rates used in

CHIMERE (in 108 molecules/cm2/s); (b) a posteriori correction factors to them. Decadal trends

(percent per year) in summertime anthropogenic NOx emissions; (c) estimated with the EMEP data

and (d) derived from satellite measurements. Blank dots in “d” mark grid cells for which

the difference between the emission trends is significant in terms of 1s (from Konovalov et al.

(2006b; 2008)).
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(1) an original inversion method enabling a partial accounting for the horizontal

transport of NOx, (2) the measurement based estimation of the error variances

involved in the Bayesian cost function, and (3) the demonstration that the NOx

emissions constrained by satellite measurements improve the simulated near-

surface concentrations of NO2. In a later study Konovalov et al. (2006b) (Fig. 9.9)

found that, on average, the uncertainties in total NOx emissions are estimated to be

about 1.7 in terms of the geometric standard deviation in Europe and about 2.1

outside Europe. The corrected emission estimates provided better agreement of

the modelled results with observations for both NO2 columns and near surface

concentrations of O3.

Although in general satellite data products do not themselves distinguish

between anthropogenic and biogenic emissions, it is sometimes possible to use

additional sources of information, by taking into account temporal evolution of the

measured NO2 columns and by selecting regions with dominating types of NOx

sources. For example, Jaeglé et al. (2004) estimated NO emissions from soils in

Africa by combining inversions of GOME NO2 columns with space-based observa-

tions of fires and bottom-up estimates of fossil fuel and bio fuel emissions. A similar

approach was used by Wang et al. (2007) to quantify NO emissions from soils in

eastern China. Martin et al. (2007) estimated NOx emissions from lightning in

tropical regions using tropospheric NO2 columns from SCIAMACHY together with

tropospheric O3 columns from OMI and MLS, and upper tropospheric HNO3 from

ACE-FTS. In their study, the CTM GEOS-Chem was used to identify locations and

time periods in which lightning would be expected to dominate the trace gas

observations. Multi-annual satellite measurements already available can be used,

not only to constrain different sources of emissions and improve their spatial

allocation, but also to study their long-term changes. Such studies provide valuable

opportunities to verify air pollution control strategies and to monitor changes in air

pollution sources in the regions where the ground based monitoring networks

are either sparse or absent.

Richter et al. (2005) found a highly significant increase of NO2 columns over the

industrial areas of China in a decadal period from 1996 to 2005 using a combined

time series of GOME and SCIAMACHY measurements. They used the MOZART

CTM to justify that these changes are caused by similar increases in NOx emissions.

Note that this study is not an inverse modelling study in a classical sense, since it

does not involve any inversion of a mathematical relationship between observations

and emissions.

Similarly, Kim et al. (2006) and van der A et al. (2006) provided some useful

insights into NOx emission changes in the United States and China, respectively,

without employing any inverse modelling technique. Kim et al. (2009) extended

their work to the western USA where they found evidence that changing legislation

and changing populations have a strong impact on the NOx emissions in cities in

this region. Another true inverse modelling study of multi-annual changes in NOx

emissions was performed by Konovalov et al. (2008). They used the time series

of NO2 columns derived from the GOME and SCIAMACHY measurements in

combination with the CHIMERE CTM in a Bayesian inverse modelling scheme,
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to estimate decadal NOx emission trends in Europe and the Mediterranean

(Fig. 9.9). Instead of looking for deviations from “expert” estimates of emissions

(as is common in atmospheric inversion studies), Konovalov et al. (2008) con-

strained a priori only the minimum and maximum values of emission trends in each

grid cell. Accordingly, the top-down estimates obtained can be regarded as

a measurement-based alternative to trends derived from bottom-up emission

cadastres. An even more direct approach involving a simple combination of

satellite measurements with CTM simulations was proposed later by Konovalov

et al. (2010) to estimate multi-annual NOx emission trends in megacity regions.

NOx emission reductions in the last decade over western and central Europe are

confirmed by the top-down approach, as well as increases in Spain and emissions

related to shipping. Differences between the bottom-up and top-down approaches

are notable, especially over south-eastern and eastern European countries. Import-

antly, the estimates of emission trends obtained were found to be consistent with the

available surface measurements of NOx and O3 (available mainly over western

Europe).

Satellite measurements have also been used to estimate emissions of other

important short-lived species such as isoprene. Such estimates can be performed

by inversion of the modelled relationship between isoprene emissions and HCHO

column measurements. For example, Millet et al. (2008) performed the inversion

of OMI measurements and found that the derived isoprene emissions in North

America are spatially consistent with a normal bottom-up isoprene emission inven-

tory (MEGAN) (R2 ¼ 0.48–0.68) but, on average, lower by 4–25%. Corresponding

work was performed for Europe (Dufour et al. 2009) using SCIAMACHY

derived HCHO columns, facing the difficulty of much smaller isoprene emissions

in Europe compared with the US.

Recently Stavrakou et al. (2009), motivated by the large underestimate from the

global CTMs of the observed CHOCHO columns from SCIAMACHY, investi-

gated the possible existence of an additional CHOCHO source of biogenic origin

over the land. They performed two inverse modelling scenarios for CHOCHO

sources. The first included an additional primary source of CHOCHO over land

and the second assumed secondary formation through the oxidation of an unspec-

ified CHOCHO precursor with a lifetime of 5 days. As well as the extra source, the

inversion scheme optimised the primary CHOCHO and HCHO emissions as well

as their secondary production from other identified NMVOC precursors of anthro-

pogenic, pyrogenic and biogenic origin. The best performance is achieved in

the second scenario with the inferred total global continental CHOCHO source

estimated to be 108 Tg yr�1, almost twice as high as the global a priori source.
The extra secondary source is the largest contribution to the global CHOCHO

budget (50%), followed by the production from isoprene (26%) and from anthro-

pogenic NMVOC precursors (14%). The updated emissions allowed for a satisfac-

tory agreement of the model with both satellite and in situ CHOCHO observations.

The large CHOCHO column amounts observed over the tropical oceans are still

not explained.
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9.3.2 Inversions for CO and CH4

The dense, high-quality CO observations performed by the MOPITT satellite

instrument gave rise to several remarkable studies applying the inverse modelling

technique to estimate CO emissions. For example, Pétron et al. (2004) used the

MOZART CTM and the MOPITT CO retrievals to perform a sequential Bayesian

estimation of CO sources in 15 large regions of the world. The largest correction

factor (about 50 %) for anthropogenic emissions was needed for eastern Asia.

A posteriori emissions significantly improved the agreement between the simulated

CO distributions and independent ground based measurements. A similar study was

presented by Arellano et al. (2006). Their a posteriori estimate is also much higher

(about a factor of 2) than the corresponding earlier estimate for eastern Asia, and

significant differences were found between the earlier and post source emissions in

many other regions. Stavrakou and M€uller (2006) performed an inversion of

MOPITT data using the adjoint of the IMAGE model (Fig. 9.10). The main goal

of their study was a comparison of the large region and grid-based Bayesian

inversion methods. Both methods gave similar average estimates, but the grid-

based approach brings the model columns much closer to the observations because

of its better spatial representativity. An interesting novel feature of the method used

by Stavrakou and M€uller (2006) is optimisation of the sources of the main biogenic

VOC compounds simultaneously with the CO sources.

The CH4 and CO2 retrievals are clearly improving but they still differ between

different groups (Schneising et al. 2009). As CH4 has a reasonably uniform

distribution over the troposphere, due to its large lifetime (8–9 years), accurate

satellite observations, with perhaps less than a few percent of error, are needed

to obtain information on CH4 fluxes, which are primarily emissions. Meirink

et al. (2006) applied four-dimensional variational (4D-var) data assimilation
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Fig. 9.10 Ratio of optimised to earlier anthropogenic emissions estimated by the inversion of

MOPITT observations (adopted from Stavrakou and M€uller (2006)).
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method to synthetic measurements of atmospheric CH4 to investigate the utility of

SCIAMACHY observations for CH4 source estimation. They concluded that SCIA-

MACHY observations with a precision of 1–2% can contribute considerably to

uncertainty reduction in CH4 source strengths, but that systematic observation

errors well below 1% would have a dramatic impact on the quality of the derived

emission; thus identification and removal of these biases is crucial. Bergamaschi

et al. (2007) presented initial results of a synthesis inversion of coupled surface and

satellite CH4 observations. The use of surface measurements allowed the inverse

system to compensate for potential systematic biases in satellite retrievals. They

found, in particular, that a coupled inversion yields significantly larger tropical

emissions compared to the a priori estimates or the inversion estimates based on the

surface measurements only. These discrepancies have been reduced with corrected

spectroscopic data that lead to more accurate CH4 retrievals as discussed in

Section 9.2.1. Meirink et al. (2008a) demonstrated the advantage of 4D-var in

reducing aggregation errors by optimising emissions at the grid scale of the

transport model using the 1 year surface observations of CH4, whereas Meirink

et al. (2008b) applied the 4D-var system to analyse SCIAMACHY observations

with a focus over South America.

Recently, Bloom et al. (2010) have developed a simple model to combine

satellite observations of CH4 from SCIAMACHY and of gravity anomalies from

the Gravity recovery and Climate Experiment (GRACE) satellite, used as proxy for

water table depth, together with surface temperature field. Using a priori informa-

tion about rice paddy distribution to isolate wetland regions from their emission

estimates they found that tropical wetlands contribute 52–58% of global emissions,

with the remainder coming from the outside the tropics. They also estimated a 7%

rise in wetland CH4 emissions over the period 2003–2007, due to warming of mid-

latitude and Arctic wetland regions, a figure consistent with recent changes in

atmospheric CH4.

9.3.3 Need for Future Developments

Atmospheric inverse modelling based on satellite data is a new field of research, and it

is obvious that the potential for satellite measurements in the given context is yet far

from fully exploited. Probable future developments could include an applicable

extension of a list of the atmospheric constituents, both gaseous and aerosol, for

which sources can be estimated from observations (for example, VOC emissions from

CHOCHO and/or HCHO observations, CO2, SO2 emissions, etc.). Inverse methods

(in particular, Bayesian probabilistic methods) are already widely used in retrievals of

satellite data. Future developments should aim at combining satellite retrieval and

emission inversion into a coherent framework, because both rely on atmospheric

models. Inversions of satellite measurements by means of atmospheric models can

also help in estimating parameters of atmospheric processes other than emissions,

particularly loss processes in regions without noticeable emissions or when sources

have known (say, weekly) patterns of variation. An interesting demonstration of the
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potential of satellite observations in this sense was provided by Beirle et al. (2003)

who estimated the atmospheric lifetime of nitrogen oxides by using GOME NO2

measurements and a simple box model approach. In addition to chemical sinks,

wet and dry deposition rates could also be inverted in future studies. Certainly,

observations from a geostationary platform would allow a much finer analysis: in

particular, the diurnal variability of emissions or other parameters could be inverted.

9.4 Data Assimilation

9.4.1 Objectives and State of the Art Approaches

Coupling models with data in a mathematically sound fashion inevitably requires

data assimilation (DA) (Chapter 7). There is a dual requirement in confronting

models with data: either, improved forecasting, or control of consistency between

observations and model results. Improved forecasting is expected from the assimi-

lation of meteorological and atmospheric chemistry observations, thereby creating

a dynamically consistent and complete “movie” of optimal quality in some objec-

tive sense of estimation theory. Alternatively, from a scientific viewpoint, evidence

is provided about whether model results and measurements are mutually consistent

within predefined margins, corroborating or rejecting our system knowledge as

sufficient (Bennett 2002).

Advanced DA algorithms incorporate the following subtasks: (1) Filtering the

signal from noisy observations, (2) interpolation in space and time, and (3) comple-

tion of state variables that are not sampled by the observation network (Cohn,

1997). By doing this, DA serves the classical objective to estimate complete

parameter fields from sparse data by chemical and physical laws, estimates

forcing-fields acting on the system under investigation, tests scientific hypotheses,

helps design optimal observation system configurations, and solves mathematically

ill-posed modelling problems (Bennett 1992). DA can further be applied for data

validation, field experiments, and climate signal detection.

DA algorithms must be designed to satisfy objective quality criteria. Spatio-

temporal DA or inversion techniques are candidates for advanced methods, which

are able to combine model information with data in a consistent way, while, at

the same time, are able to provide a Best Linear Unbiased Estimate (BLUE), i.e.

a linear unbiased estimator of the data to be assimilated by the model having the

smallest dispersion matrix. Past attempts to analyse tracer fields were based on

monovariate kriging techniques in the troposphere (a basic version of BLUE,

Fedorov (1989)), and other purely spatial methods in the stratosphere (Stajner

et al. 2001; Struthers et al. 2002).

In many cases, these approaches are equivalent to Optimal Interpolation (OI)

(Daley 1991) and satisfy the BLUE property, on the spatial scale but not the

temporal scale. The latter fact implies that repeated applications of OI do not
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force models to maintain a BLUE compatible evolution, which means that chemical

imbalances, much larger than observed, cannot be avoided.

Generally, chemical DA methods produce chemical state estimates, frequently

referred to as analyses, typically on the model grid, after assimilation of observa-

tions in model-simulated fields as background information. In contrast to meteoro-

logical conditions, chemical DA deals with a vast manifold of chemical species

(in the order of 100 species in CTMs) and the tiny number of different observed

compounds (less than 5 in most cases: O3, NO2, particulate matter, CO, SO2).

Therefore a chemical model to be used as constraint is a key for chemical DA. For

this spatio-temporal DA, the BLUE property is provided by two main families of

techniques, the 4D-var DA algorithm and the Kalman filter.

For 4D-var, a first successful demonstration was provided by Fisher and Lary

(1995) applying a stratospheric chemical box model with a small number of

constituents. The authors assessed the applicability of a variational DA method

for atmospheric chemistry applications. Eskes et al. (1999) applied the variational

method to a two-dimensional model for the assimilation of total satellite columns.

For the troposphere, the usefulness of the variational method has been shown by

Elbern et al. (1997), applying the box model version of the chemistry mechanism

RADM (Regional Acid Deposition Model) (Stockwell et al. 1990). Further, the

successful extension to a full chemical 4D-var DA system was demonstrated in

the context of identical twin experiments and for an O3 case study (Elbern and

Schmidt 2001), using the University of Cologne EURAD regional CTM. Additional

chemistry applications of the 4D-var technique were provided for both the tropo-

sphere (Chai et al. 2006) and the stratosphere (Errera and Fonteyn 2001).

Comprehensive DA setups for the troposphere have to account for the fact that,

in contrast to stratospheric constituent DA and general meteorological DA, after

some time of integration, the evolution of the tropospheric model state is not

primarily controlled by the initial state. Rather, emission rates act as strong

controlling factors, and exert a direct influence even over short timescales (ranging

from seconds close to sources to days in remote areas). Furthermore, emission rates

are still not sufficiently well known. Thus, emission rates must be considered as

one parameter to be optimised in the DA process. More generally, the parameter to

be optimised by DAmust be tailored to the simulation objectives. To this end, those

parameters must be chosen for optimisation by DA, which exert a strong influence

on the simulation or forecast skill and, at the same time, are not sufficiently well

known. Given a model parameter, the degree of priority for optimisation is indi-

cated by the product of impact on forecast skill, as quantified by suitable sensitivity

tests, and the paucity of knowledge, as quantified by error margins.

For tropospheric chemistry DA, a generalisation with respect to emissions needs

to be implemented. This can be done in the incremental formulation of 4D-var by

augmenting the state vector by inclusion of deviations from the underlying emis-

sion inventory, as well as deviations from a background chemical state, as shown by

the work of Elbern and Schmidt (2001) and Elbern et al. (2007) with EURAD-IM.

Details on this approach are given in the Appendix, Section 9.6.
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An example of a non-chemical implementation of DA, targeted at optimising

sources and sinks of CO2, is provided by the CarbonTracker system (Peters et al.,

2007).

9.4.2 Example Results for Tropospheric O3 assimilation

Since most of the O3 is in the stratosphere, obtaining accurate tropospheric O3

measurements from space is challenging. The combination of observations with

CTM results is a suitable procedure to obtain global estimates of tropospheric O3.

Two examples are presented here. de Laat et al. (2009) estimated the tropospheric

O3 columns by the subtraction of assimilated O3 profile observations from total

column observations, the so-called Tropospheric O3 Re-Analysis or TORAmethod.

They evaluated the tropospheric O3 columns so derived, with space-borne O3

observations. Six years (1996–2001) of ERS-2 GOME/TOMS total O3 and

GOME O3 profile observations have been used in the TM5 model with a linearised

chemistry parameterisation for the stratosphere.

GOME O3 profile observations improve the comparisons between model results

and ozone-sondes in the tropical UTLS region but slightly degrade the comparisons

in the extra-tropical UTLS for both day-to-day variability and monthly means. The

large ground pixel size of the GOME O3 measurements (960 � 100 km) in

combination with retrieval and calibration errors have been suggested to be the

main causes of this degradation. Results are expected to improve with higher

resolution observations from space.

Stajner et al. (2008) included retrievals from the MLS and the OMI on EOS-Aura

in the GEOS-4 O3 data assimilation system to derive tropospheric O3. Independent

ozone-sondes and MOZAIC data were used for evaluation of the tropospheric O3

columns. In the troposphere, OMI and MLS provide constraints on the O3 column,

but the O3 profile shape results from the parameterised O3 chemistry and the

resolved and parameterised transport. Assimilation of OMI and MLS data improves

tropospheric column estimates in the Atlantic region but leads to an overestimation

in the tropical Pacific, as well as an underestimation in the northern high and

middle latitudes in winter and spring. Comparisons of assimilated tropospheric O3

columns with ozone-sonde data reveal differences of 2.9–7.2 Dobson Units (DU),

which are smaller than the model-sonde differences of 3.2–8.7 DU.

Geer et al. (2006) analysed eleven sets of O3 from seven different DA systems.

In most analyses, MIPAS O3 data are assimilated; two studies assimilate

SCIAMACHY observations instead. Analyses are compared to independent O3

observations (e.g. ozone-sondes) covering the troposphere, stratosphere and lower

mesosphere during the period July to November 2003. Where the model results

diverge, the main explanation was the way O3 was modelled. Two analyses used

numerical weather prediction (NWP) systems based on general circulation models

(GCMs); the other five used CTMs. The systems examined contain either linearised
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or detailed O3 chemistry, or no chemistry at all. The result points to the need of

further physically based model improvements.

O3 assimilation also offers the possibility of providing more accurate initial

guesses for O3 retrieval algorithms than are currently available. Other major

applications of O3 assimilation with regard to the troposphere are:

l The provision of vertically resolved global maps of O3;
l An improvement in the radiative transfer calculations needed to retrieve informa-

tion from many satellite instruments that require accurate representation of O3;
l Improvement in the predictions of UV radiation fluctuations at the surface of the

Earth, since UV is absorbed by O3 in the atmosphere; and
l Provision of constraints on other observed constituents that are affected by O3

chemistry (Rood 2007).

9.4.3 Example Results for NO2 Tropospheric Column
Assimilation

Retrieval results from tropospheric NO2 columns are ingested into the model by

means of averaging kernels, where the observation operator, commonly denoted as

H (see Appendix, Section 9.6), is constructed by the scalar product of the averaging

kernel with the NO2 molecular density of the model profile (Eskes et al. 2005). The

average fraction of the averaging kernel at the surface is roughly 10% of themaximum

amplitude in most cases (Fig. 9.11). Recalling the significance of the averaging kernel

shape as a sensitivity profile, corrections by the DA procedure are implemented in the

same proportion as the sensitivity. The practical meaning is that the modification of

Fig. 9.11 Mean averaging kernel over the European continental scale model domain for a 2 week

case study.
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the surface layer is hardly affected by this correction in comparison to the free

troposphere. This must be remembered when considering the following results.

An example of combined assimilation of SCIAMACHY and OMI NO2 tropo-

spheric columns with the EURAD-IM CTM for July 2006 is given for illustration.

Both SCIAMACHY and OMI satellite retrievals from KNMI were assimilated

with averaging kernels, using error information from the appropriate data provider.

In an attempt to provide a horizontal model resolution comparable to the minimum

OMI 24 � 13 km2 footprints, the horizontal model resolution was refined to

15 � 15 km2. In this case study, the DA configuration has a time window of 3 h

(09:00–12:00 UTC) to include SCIAMACHY satellite sensor data with a late

morning overpass over Europe and OMI overpass in the early afternoon over

eastern Europe. A longer assimilation window turned out to be unaffordable at

15 � 15 km2 horizontal resolution. After assimilation, a 24-h forecast is made,

starting at 09:00 UTC. The analysis produced by the assimilation is the initial field,

and an emission rate correction factor is applied. Numerical experiments suggest

that about 10 iterations are sufficient to ensure convergence to the observations.

After assimilation, an a posteriori analysis was performed (Talagrand 2003).

The affordable short assimilation interval from 9–12 UTC enforced a fairly

disjointed footprint pattern for SCIAMACHY and OMI. While the former covers

the western model domain due to its late morning orbit, the latter covers eastern

parts due to its early afternoon overpass. Fig. 9.12 illustrates these conditions, along

with retrievals (y), forecasted retrievals of NO2 columns (Hxb), and analysed

tropospheric NO2 columns (Hxa). The analysis result can be clearly identified as

a weighted combination of all information sources, retrievals and forecast acting as

background information.

Fig. 9.12 Comparison of NO2 tropospheric columns in molecules/cm2 for 6th July 2006. Left
panel column: KNMI retrieved and assimilated values (y); middle panel column: EURAD

forecasted values (Hxb); right panel column analyses (Hxa).
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The effect of NO2 column DA for 6th July 2006 is presented in Fig. 9.13. The

field obtained is supplemented by difference fields for the tropospheric columns and

the concentrations. Clearly major increments can be observed in western England

and in the area of north-western Russia. Both these signals are visible for surface

concentrations.

9.4.4 Aerosol Satellite Data Assimilation

A 4D-var approach for aerosol modelling is hampered by the construction of the

adjoint model, as the algorithm contains numerous cases which can not be differ-

entiated. Hence, no adjoint of a full-fledged aerosol model with a 3D model is

available at present. Sandu et al. (2004) gives a discussion on numerical aspects;

however, a 3D-var example is presented here. In addition to difficulties of model-

ling the variety of processes affecting aerosols, aerosol DA is further hampered by

the fact, that the only measurements of lumped particulate matter abundances or

aerosol optical depth are possible. Neither quantity is modelled as a space state

variable as such.

Fig. 9.13 Data assimilation result in terms of tropospheric columns for 6th July 2006. NO2 model

columns based on OMI and SCIAMACHY assimilation within the assimilation interval, 9–12

UTC. Units in molecules/cm2 (left panel). Difference field giving implied changes for tropospheric

columns by assimilation (right panel), and induced surface concentration changes by NO2 in ppb

(bottom panel).
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Enforced by the sparseness of data sources of a single type, the combination of

information from remote sensing and in situ measurement, that is the use of

heterogeneous data sources, is therefore crucial for success. Unlike conditions

with satellite retrieved NO2 tropospheric columns, in satellite retrievals for aerosol

data the strongest signals originate from lower atmospheric layers. However, as

optical information must be processed, the central problem for DA is bridging

information from the optical to the chemical domain. An example of a recent

discussion on MODIS data inverse modelling is given in Dubovik et al. (2008).

Strictly, related observation operators have to be devised for ingestion of the

information.

Aerosol data used in this study are obtained from both satellite retrievals and

routine in situ observations.

(a) Aerosol data products retrieved from satellite:

SYNergetic Aerosol Retrieval (SYNAER) satellite retrievals: Satellite data are

from retrievals based on the SYNAER method (Holzer-Popp et al. 2002a;

2003b). The retrieval procedure has been developed to make a synergistic use of

simultaneous GOME and ATSR-2 measurements. It has then been modified to use

SCIAMACHY and AATSR data. The retrieval principle is to utilise two comple-

mentary properties of (A)ATSR (high spatial resolution) and GOME/SCIAMA-

CHY (high spectral resolution). It is able to deliver various PMx as integrated

values.

(b) In situ observations:

The European Environmental Agency collected aerosol data that originate from

about 445 routine measurement sites, operated by national and regional environ-

mental protection agencies. From these data, available from the EEA database

AirBase, hourly PM10 mass concentrations have been used.

The algorithm is highly adaptable to non-isotropic and inhomogeneous aerosol

radii of influence, while at the same time, it allows for efficient processing of

ensemble model runs for background error covariance matrix estimation. For

the study presented here, aerosol dynamics are perturbed to generate ensembles

with nine members, modifying gaseous precursors and direct aerosol emission

independently.

The demonstration case features 14th July 2003 (Fig. 9.14). The SCIAMACHY

footprint track covers parts of the Iberian Peninsula, where the retrievals show

elevated PM10 levels, which proved to be biomass burning products from large

wildfire events at that time. This case has been selected to demonstrate the cap-

abilities and limits for assimilation under conditions of unpredictable emission

events. The special challenge is that extraordinary events like wildfires engender

higher level aerosol maxima, which usually differ substantially from modelled

profiles, with profile maxima often higher than usual.

Table 9.1 quantifies the beneficial impact of satellite DA in addition to in situ
DA, with independent in situ data, (i.e. direct surface measurements) withheld from

the assimilation procedure. A substantial improvement can be claimed for typical

conditions (without measured notable wildfires) signified by reduction of root mean
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square errors, especially with SYNAER satellite data. In the case of wildfires, the

improvement is markedly reduced, but still clearly visible. In both cases, satellite

data from SYNAER demonstrate efficient support for DA improvements.
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Fig. 9.14 Signal duration of SYNAER data assimilation results. Comparison of simulated PM10

contents: assimilation based analysis after assimilation 14th July 2003, at 10:00 UTC without any

previous assimilation (top left panel), and with data assimilation processing continuously from 1st

to 14th July 2003 (top right panel). In situ and satellite/SYNAER observation base available for

14th July 2003 (bottom panel). The accumulation of information during the 2 weeks is clearly

visible from the discrepancies.

Table 9.1 Root mean square errors for assimilation fields for two consecutive dates validated by

unassimilated in situ observations within satellite footprints. Improvements are given with respect

to no assimilation

Date Number of

ground

stations

withheld

Special

characteristics

RMS error [mg m�3] (% improvement)

No

assimilation

In situ
data

Satellite þ
in situ

13th July 2003 20 None 6.3 2.5 (61%) 1.9 (70%)

14th July 2003 49 Wildfires 7.3 5.5 (24%) 5.3 (28%)
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9.5 Summary: Perspectives

Earth system models, describing dynamical, physical, chemical and biological

processes which determine the conditions at the Earth’s surface, have been evolving

over the past decades. The increasing computer power is facilitating more accurate

simulation of current and past conditions and improving our confidence in the

accuracy of prediction. The latter is required for policymakers in their quest to

achieve legislation facilitating sustainable environmental conditions. Global data

sets are required to test the ability of our Earth system models.

In this context the synergistic use of satellite observations with chemistry-

transport modelling has opened new horizons in air pollution control and climate

change evaluation. However, models and observations from satellite platforms

having higher spatial and temporal resolution are required in order to attribute

better the air pollution to its different sources. The signals from these sources will

not be diluted or mixed with other sources in large ground or satellite observations

or larger grid boxes of the CTMs. Improvements are also needed in the temporal
sampling of the atmosphere by the satellite based sensors, which has to be taken

into account in the models when satellite retrievals are used.

A continuous dialogue between satellite retrieved observations of atmospheric

trace constituents and model results enables the improvement of: (1) process

understanding, (2) the models, and (3) retrieval algorithms, in order to construct a

precise picture of our changing atmosphere.

Inverse modelling can contribute to the development of a general observation-

based methodology for estimating parameters of the atmosphere that cannot be

observed directly. Inverse modelling combining both traditional, i.e. ground-based

and airborne (aircraft, balloon) observations and satellite observations can contrib-

ute to improving emission inventories of trace constituents, relevant to air pollution

and climate change. It also allows verification, by space-based observations, of

control strategies for atmospheric emissions.

Data assimilation has a unique role to play with respect to forecasting condi-

tions. It has also been shown that it is important for filtering the signal from noisy

observations, interpolation in space and time, and completion of state variables that
are not sampled by the observation network. Data assimilation can further be

applied for data validation, field experiments, and climate signal detection. The

assimilation of satellite observations is a critical step forward in impact modelling

for scientific and political decisions with regard to environmental changes. It

contributes critically to the improvement of prognostic models, such as those

used for weather forecasts and more recently for chemical weather forecasts.

Such results are of relevance for society (public services) since they increase the
accuracy of the predictions and our confidence to them.
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9.6 Appendix

Inverse Modelling: Principles

The following equation provides a relationship between y, a vector grouping a set of
observations, and x, the vector of variables to be determined (called state variables,
e.g. emissions), through applying a forward model F with fixed parameters b:

y ¼ Fðx; bÞ: (9.1)

By inverting this model, analytically or numerically, we can obtain x for a given y.
As errors are associated with both x and y, a probabilistic treatment of the inversion

problem is necessary. Its starting point is the Bayesian theorem.

PðxjyÞ ¼ PðyjxÞPðxÞ
PðyÞ : (9.2)

In the context of an inverse modelling problem, P(x) and P(y) represent the
probability distribution functions (pdf) for the state vector x and the observation

vector y. In Bayesian framework, P(y|x) represents the conditional probability to

observe a particular vector y for a given value of the set of state variables x. While

P(x) represents the a priori information on the state vector (for example an

emission inventory with a given uncertainty), then P(x|y) represents the a posteriori
probability that the state vector was xwhen ywas measured reflecting the additional

information from measurements. This latter pdf can be used to find a maximum

likelihood for an a posteriori estimate (MLAP) of x and its uncertainty.

For simplicity, we illustrate the main steps to derive a MLAP estimate for a

scalar linear case first. Let xa be the a priori estimate of the state variable, sa its
uncertainty (assumed to be normal), y an observation with uncertainty se including
both the error in observations and in the forward model (due to the model formula-

tion and uncertainty in model parameters b), and k a the forward model linking

x and y.
If uncertainties in xa and y are distributed in accordance to a normal distribution,

P(x|y) are proportional to an exponential expression combining two terms (Eq. 9.3):

the departure of an updated state variable from the a priori, and the difference

between observations y and simulated values kx for a given x. Combining these two

terms, weighed by the respective inverse error variances, is exactly the principle of

optimal estimation.

PðxjyÞ � exp �ðx� xaÞ2
2s2a

� ðy� kxÞ2
2s2e

" #
(9.3)
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In order to determine the maximum value for P(x|y), we define a cost function
J(x) given by the terms in brackets in Eq. 9.3. The solution to @J=@x ¼ 0 gives the

optimal estimate x̂:

x̂ ¼ xa þ gðy� kxaÞ: (9.4)

where g is the so called gain factor, which weights the contribution of observations

y to x̂. It is given by:

g ¼ ks2a
k2s2a þ s2e

(9.5)

For se/k >> sa, g tends to 0, for se/k << sa, g tends to 1. This latter case is

obviously advantageous for inverse modelling because then observations bring

much new information significantly reducing the a posterior uncertainty, s_
2
,

given by Eq. 9.6:

1

ŝ2
¼ 1

s2a
þ 1

se=kð Þ2 : (9.6)

Note however, that s_
2
<sa2 always holds, so even uncertain observations add

some information.

In the more general case of a set of state variables to be optimised (for example

emissions at different locations or times) from a set of observations, we need to

reformulate equations 9.3–9.6 in matrix from. The cost function J(x) becomes:

JðxÞ ¼ ðx� xaÞTS�1
a ðx� xaÞ þ ðy�KxÞTSe�1ðy�KxÞ (9.7)

Again, an optimal solution for x can be found by differentiating J with respect

to x. However, several practical problems occur. The a priori and observational

error terms Sij constituting the matrices Sa and Se are in general not well known.

Very often, non-diagonal terms representing error correlations for different mea-

surements or state variables are simply neglected. Subjective estimates for the

diagonal error terms are made, which can affect the weighting procedure in the

optimal estimates.

In Eq. 9.7,K represents the so called Jacobian matrix with elements kij ¼ dyi/dxj
indicating the sensitivity of a measurement at i to a state variable at j. It can be

solved by running an atmospheric model and varying xj which needs n þ 1 runs,

n being the dimension of x. For the general case of a non-linear model, this procedure

has to be repeated several times starting with xa, and iterating for each new update

of x. Two types of solutions are applied to avoid a large computational burden for

large n: (1) the problem is decomposed for sub-domains where each small n, or state
variables are aggregated for large regions reducing their number; and (2) use of the

adjoint model (Giering and Kaminski 1998) allowing a calculation in one backward
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run all derivatives dJ/dx1. . . dJ/dxn, and thus to avoiding explicit evaluation of K.
This procedure has to be applied iteratively (using for example steepest descent

algorithms) until an absolute minimum of the cost function J is found. The adjoint
method is also known as 4D-var assimilation, because observations can be

distributed over a time window, and is in widespread use in meteorology when a

task is to optimise initial conditions. For the implementation of the 4D-var

approach, a distance function or objective function, which penalises both discre-

pancies with observations and a priori knowledge of emission rates and initial

values, also called cost function, may be defined as follows:

Jðx; eðtÞÞ ¼ 1

2
ðxb � xð0ÞÞTB�1ðxb � xð0ÞÞ þ 1

2

ðN

0

ðebðtÞ � eðtÞÞTK�1ðebðtÞ

� eðtÞÞdtþ 1

2

ðN

0

ðyðtÞ � HxðtÞÞTR�1ðyðtÞ � HxðtÞÞdt (9.8)

where J is a scalar functional defined on the time interval 0 � t � N dependent on

the vector valued state variable x(t), and a parameter e(t) to be optimised. Here,

observations y are compared with their model equivalent Hx at time t, with the

operator H being the forward observation operator. The error covariance matrices

of the forecast xb, the first guess or background emission rates eb(t) and observa-

tions y(t) are denoted B, K and R, respectively. The CTM with inclusion of

emissions is given by dx dt= ¼ MðxÞ þ e; where M acts as a generally non-linear

model operator and e is in our case the vector of emission rates. Both terms uniquely

define the state variable x(t) at time t, after an ever fixed initial state x(0) is

provided.

The variational chemistry DA algorithm is composed by four components: (1)

the forward model, (2) the adjoint of its tangent linear version, (3) the background

error covariance matrix, making use of the diffusion paradigm (Weaver and Cour-

tier 2001) for anisotropic and inhomogeneous radii of influence, and (4) the mini-

misation routine, where the quasi-Newton (L-BFGS) method is selected. Further

numerical and implementation details are given in Elbern et al. (2007).

An alternative to the 4D-var approach is Kalman filtering (KF) with the theoret-

ical ability to update the forecast error covariance matrix B and analysis error

covariance matrix A. Given the model and analysis space state dimension of order

106–7 in today’s CTMs, direct application of KF is far beyond feasibility (and will

always be so), and sophisticated numerical complexity reduction measures must be

devised. In sloppy parlance often sequential applications of optimal interpolation

are termed “reduced KF”, despite the fact that neither B is updated norA computed.

In contrast, Kalman filter implementations with sophisticated complexity reduction

techniques are still very rare. Advanced implementations are presented by van Loon

et al. (2000), where a reduced rank square-root approach (RRSQR-KF) was

selected to factorise covariance matrices by a few principal components (Verlaan
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and Heemink, 1995). Further elaboration on this technique by combination with an

ensemble Kalman filter method (En-KF) resulted in additional skill (Hanea et al.,

2004). Optimisation parameters include emission rates, photolysis rates, and depo-

sition rates, the correction quantities of which are formally introduced as “noise”

parameters in the Kalman filter formulation.
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